Oxide Film Characterization of Fe-based Alloys for Potential Accident

Tolerant Fuel Application in Simulated PWR Environment Su Hyun Park^a, Chaewon Kim^a, Chae Won Jeong^a, Hyeon Bae Lee^a, Changheui Jang^{a,*}

"Nuclear and High Temperature Materials Laboratory Dept. of Nuclear and Quantum Engineering, KAIST, Rep. of Korea *Corresponding author: chjang@kaist.ac.kr

샒 한국원자력학회

I. Introduction

KAIST

***** ATF (Accident Tolerant Fuel)

- Since the Fukusima accident in March 2011, many studies focused on reducing the hydrogen generation rate of zirconium alloy.
- General Requirement for ATF cladding material is resistance to degradation and corrosion for maintaining integrity when accident happen and normal operation as well.

***** ADSS (Alumina-forming Duplex Stainless Steel)

- Author's group have developed model alumina-forming duplex stainless steel (ADSS) which is candidate for ATF cladding material.
 Advanced Steel
 ADSS alloy
- Evaluation of corrosive behavior in simulated PWR oxidation environment will be discussed in this poster.

III. Result

- Surface Analysis

All 4 materials shows good coverage on the surface with oxide.
#B51, larger particles on bright part than on dark part that can be explained by high content of Cr in Ferrite region (dark region).
In #B51, there are AlNbO₄ known as cause of degradation on corrosion resistance.

* Electrochemical measurement

- Radius of capacitance loop (reaction resistance of oxide) 2205 > APM > ADSS = 347 SS
- The EIS result completely match with Cr content order.

II. Experiment

Test environment

Environment		Simulated PWR steam		
Temperature		400 ℃		
Pressure		20 MPa		
	Dissolved hydrogen	25 cc/kg		
	Dissolved oxygen	< 5 ppb		
Water	Conductivity	22-26 µS/cm		
Chemistry	H ₃ BO ₃	1200 ppm		
	LIOH	2.2 ppm		
- Steam corro	sion test in simula	ted PWR for 1755 h		

Material composition for corrosion test

Material composition for corrosion test									
Fe	Cr	Ni	С	Mn	Si	Nb	AI		
Bal.	16.33	18.77	0.11	1.04	0.31	0.53	6.14		
Bal.	17.25	10.22	0.03	1.68	0.4	0.28			
Bal.	21.99	0.15	0.03	0.16	0.28		5.81		
Bal.	22.5	4.8	0.01	0.87	0.45				
	Fe Bal. Bal. Bal. Bal.	Fe Cr Bal. 16.33 Bal. 17.25 Bal. 21.99 Bal. 22.5	Fe Cr Ni Bal. 16.33 18.77 Bal. 17.25 10.22 Bal. 21.99 0.15 Bal. 22.5 4.8	Fe Cr Ni C Bal. 16.33 18.77 0.11 Bal. 17.25 10.22 0.03 Bal. 21.99 0.15 0.03 Bal. 22.5 4.8 0.01	Fe Cr Ni C Mn Bal. 16.33 18.77 0.11 1.04 Bal. 17.25 10.22 0.03 1.68 Bal. 21.99 0.15 0.03 0.16 Bal. 22.5 4.8 0.01 0.87	Fe Cr Ni C Mn Si Bal. 16.33 18.77 0.11 1.04 0.31 Bal. 17.25 10.22 0.03 1.68 0.4 Bal. 21.99 0.15 0.03 0.16 0.28 Bal. 22.5 4.8 0.01 0.87 0.45	Fe Cr Ni C Mn Si Nb Bal. 16.33 18.77 0.11 1.04 0.31 0.53 Bal. 17.25 10.22 0.03 1.68 0.4 0.28 Bal. 21.99 0.15 0.03 0.16 0.28 Bal. 22.5 4.8 0.01 0.87 0.45		

***** TEM Analysis After 1755hr PWR Steam Oxidation

- Oxide layer thickness observation
 - Single phase steels (APM, 347 SS) have more thicker oxide than duplex steels (2205, ADSS #B51).
 - 2205 have uniform thickness of oxide, ADSS #B51 shows different oxide thickness depending on phase.
- For ADSS #B51, chromium oxide is formed on ferrite (higher Cr%) and thin inner oxide and large particles are formed on austenite.

IV. Conclusion

*ADSS #B51

Author's group previous research have shown that ADSS #B51 gain weight but APM loose weight in PWR environment. ADSS #B51 shows reasonable corrosion resistance similar with 347 SS (better than APM) even if their target is high temperature corrosion resistance.