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1. INTRODUCTION

APR1400 main steam line break (MSLB) accident is 

classified as a postulated design base accident. The break 

can occur either inside or outside the containment as a result 

of pipe failure. In this paper the plant response during this 

transient has been simulate using the best estimate thermal-

hydraulic code, MARS-KS V1.4. For this work, the MSLB 

is assumed to occur before the main steam isolation valve 

(MSIV) on one of two main steam piping lines outside the 

containment. As a result of the accident, the heat removal by 

the secondary system is increases, the RCS is excessively 

cooldown which may in turn increase in core reactivity. 

Consequently, departure from nucleate boiling (DNB) may 

occur, causing heat to buildup and the fuel temperature to 

increase which threatens the fuel integrity. From a safety 

perspective, this event is considered in the plant design as a 

design basis accident (DBA) and provisions should ensure 

that the safety criteria are met.  

However, to manage this DBA successfully a number 

of uncertainties need to be quantified. To survey the impact 

of variability in possible combinations of initial, boundary 

and design conditions, a Best Estimate Plus Uncertainty 

(BEPU) approach is adopted to verify that the safety criteria 

are met. BEPU is a modern and technically sound approach 

that utilizes best estimate methodology including an 

evaluation of the uncertainty in the calculated results 

(Musoiu, 2019). It provides a more realistic safety margin 

and helps improve the emergency operating procedures to 

prevent progression into a severe accident. In this study, 

uncertainty quantification method using the Wilks’ formula 

is employed to identify the success window with a 95% 

confidence level and 95% probability. 

This work uses the results of the BEPU analysis to 

provide a database of the thermal hydraulic response to the 

Artificial Intelligence (AI) algorithm training. AI is used as 

an alternative data-driven approach to predict the plant 

response during MSLB accident given the underlying 

uncertainties. 

2. METHODOLOGY

This section describes the methodology used in this 

work and can be divided into two main sub-sections. The 

first section describes the BEPU analysis using the thermal 

hydraulic model and the second section describes the 

artificial neural network model.  

2.1 Thermal Hydraulic Model for BEPU Analysis 

To model the Main Steam Line Break (MSLB), the first 

step is to develop a thermal hydraulic model of APR 1400. 

This is achieved using the realistic thermal hydraulic system 

code, MARS-KS. The system nodalization used is 

illustrated in Figure 1. It reflects the main systems and 

components included in the thermal hydraulic model which 

are also summarized in Table 1. The turbine is represented 

as boundary condition using a time dependent volume. 

Similarly, the containment is represented by a time 

dependent volume. It is assumed that the core is inintially 

operating at full power (4,062 MWt), the pressurizer 

pressure is 16.345 MPa, the core inlet temperature is 563.65 

K, two safety injection pumps are in operation, and offsite 

power is lost concurrent with the reactor trip. The sequences 

simulated using MARS-KS code as described in the Design 

Control Document are showed in Table 2. 

Table 1. MSLB Model Systems and Components 
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Figure 1. MARS-KS Nodalization. 

Figure 2. Reactor Power after Trip Initiation 

2.1.1 Thermal Hydraulic Model Validation 

The steady state calculation was performed, and the 

model results compare reasonably well to the corresponding 

values reported in the Design Documents of APR1400 as 

shown in Table 2. The results of the transient calculations 

are described in detail in the next section. 

 Table 2. Model Validation 

Parameter Base Case DCD 

Core-exit temperature, K 600.57 598.15 

Reactor inlet temperature, K 570 563.65 

Primary coolant flow rate 20175 20200 

2.1.2 Sequence of events 

Following the reactor trip, shown in Figure 2, the 

auxiliary feed water system is assumed to be immediately 

activated to the SGs. The depressurization of the affected 

SG results in the actuation of an MSIS. Actuation of an 

MSIS closes the MSIVs, isolating the unaffected SG from 

blowdown, and closes the MFIVs, terminating the main feed 

water flow to both SGs. The pressurizer pressure decreases 

to the point where a safety injections actuation signal 

(SIAS) is initiated as seen in Figure 3. The SIAS activates 

the safety injection which in turn introduces boron into the 

system which causes the core reactivity to decrease. At 30 

minutes after the event initiation, the operator follows the 

emergency procedure, and initiates plant cooldown by 

manual control of the ADVs. Shutdown cooling is initiated 

when the RCS reaches 449.85 K (350 °F) and 3.103 MPa 

(450 psia).  

2.1.3 Uncertainty Quantification 

The thermal hydraulics code is coupled to a statistical 

tool, DAKOTA, to assess the impact of the uncertainty 

parameters on the minimum DNB ratio (MDNBR) using 

Python programming language that provide the 

communication interface. The model performs the 

uncertainty propagation, including uncertain parametric 

sampling, simulation code execution and data extraction, as 

illustrated in Figure 4. The simulation was conducted using 

3 GHz Pentium CPU with 12 cores and Windows 10, with 

one-sided 5th order Wilks method for uncertainty 

quantification. 311 cases were generated in 2 days to ensure 

95 % probability coverage at 95 % confidence level. 5th 

order Wilks was selected instead of Monte Carlo sampling 

because of time limitation and because Wilks 3rd  order or 

higher has been proven in previous studies, for example, by 

A. de Crécy et al (2008), as a reliable method for sensitivity 

evaluation.   

Figure 3. Steam Generator and Pressurizer Pressure 
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Figure 4. MARS-DAKOTA Uncertainty Analysis Framework 

Figure 5. Neural network representation. 

L U Mean SD

1 SIT Temprature Uniform 0.9 1.1 1 0.05

2 Core Decay Heat Uniform 0.9 1.1 1 0.05

3 Core Conductivity Uniform 0.9 1.1 1 0.05

4 Core Heat Capacity Uniform 0.9 1.5 1 0.15

5 Break Area Uniform 0.95 1.5 1 0.1375

6 Depressurization Valves Discharge Coefficient Uniform 0.8 1.2 1 0.1

7 Break Discharge Coefficient Uniform 0.6 1.4 1 0.2

8 Interphase heat transfer Coefficient Uniform 0.9 1.1 1 0.05

9 Single phase Heat transfer coefficient Uniform 0.9 1.1 1 0.05

10 Critical flow Discrete 50 53 1 0.75

11 AFW flow rate Uniform 500 800 1 75

12 MSIS setpoint Uniform 851 975 1 31

13 Initial PZR pressure  Uniform 2000 2325 1 81.25

14 Initial SG inventory  Uniform 0.35 0.982 1 0.158

15 Safety injection delay time Uniform 20 30 1 2.5

16 Initial PZR Liquid Volume Uniform 0.219 0.6 1 0.09525

17 Flow Rate Normal 0.01 1.01 1 0.25

18 Power Normal 0.15 1.15 1 0.25

19 Inlet Temperature Uniform 0.15 1.15 1 0.25

20 Subchannel Area Normal 0.05 1.05 1 0.25

21 Nucleate boiling heat transfer coefficient Normal 0.24 1.24 1 0.25

22 Interfacial drag coefficient (bubbly flow) Normal 0.32 1.32 1 0.25

23 Interfacial drag coefficient (droplet flow) Normal 0.26 1.26 1 0.25

24 Interfacial drag coefficient (film flow) Normal 0.36 1.36 1 0.25

25 Outlet water pressure Normal 0 0 1 0

26 Fuel pellet diameter Normal 0.92 1.08 1 0.04

27 Cladding thermal conductivity Normal 0.9985 1.0015 1 0.00075

Normalized

No Parameter Distribution 

The uncertainty analysis is performed using a set of 

uncertain parameters derived from key phenomena that 

govern the accident progression as identified in previous 

studies [Yang et al. (2020), Lee et al. (2003), Castro et al. 

(2016) and Avramova et al. (2011)]. Subsequently, the 

uncertainties are propagated through the thermal hydraulic 

model for uncertainty quantification. A dataset of the system 

response is generated for randomly selected values of the 

uncertain parameters that may have great influences on the 

figure of merit (FoM), which is the DNBR in this paper. 

The number of runs is calculated by DAKOTA code based 

on the required confidence level and probability. The 

probability distribution functions (PDF’s) are used in this 

method to determine the chances of appearance of each 

parameter over the uncertainty range. Different PDF’s are 

used for different parameters depending on its variation, 

nature and its estimated distribution. These PDF’s will 

determine which value to be selected for each parameter in 

each run. Deviation and mean value are needed in order to 

perform such selection. Based on the available literature, 27 

uncertain parameters (UPs) were selected, and the 

associated distribution, mean values and range have been 

identified. One UP is assumed to be discrete, 23 UPs are 

assumed to have a uniform distribution and the rest are 

assumed to follow a normal distribution as illustrated in 

Table 3. 

With the completion of the uncertainty analysis, a 

dataset of 311 samples is obtained for the system response. 

Next, this dataset is used to train and validate the ANN 

which will be described in the following subsection.  

2.1 AI Model Development 

The AI model uses an artificial neural network (ANN), 

as illustrated in Figure 5, mimic the way human neurons 

behave by processing the information and finding the 

relation between input and output strictly using a data-

driven approach. In this investigation, an ANN model is 

developed according to the process shown in Figure 6. The 

model tests several network architectures that are capable of 

producing good regression performance metrics.  

The ANN model should undergo training, validation, 

testing and evaluation. Each step is compulsory to ensure 

the model generated is robust enough to predict the output 

value with accuracy compared to the known value from the 

pre-existing database.  

Table 3. APR 1400 MSLB PIRT 
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Initially, the data will be split into training and testing 

subsets. The ANN model will then be trained using the 

majority of data points before going through the validation 

process. If the validation is not within a reasonable range, 

the ANN will be tune by optimizing its hyper-parameters to 

reach satisfactory regression metrics. The regression metrics 

used are: mean squared error (MSE), root means square 

error (RMSE), mean squared logarithmic error (MSLE) and 

mean absolute error (MAE). Once the metrics reach the 

lowest achievable value, the ANN model will be tested with 

the randomly selected unseen data from the database and 

evaluated by testing regression performance. In this study 

the ANN architecture used (15:15:15) configuration, which 

is selected based on the previous literature with 15 neurons 

for each of the three hidden layers. Each layer is activated 

using a ‘ReLU’ function to eliminate the gradient reduction 

problem and achieve the model generalization (Park, H. et 

al, 2020). The ANN is train using 1000 epochs to ensure 

adequate learning process.   According to the common 

practice, the batch size is selected as one for generalization 

and faster convergence. Table 5 shows the ANN 

architecture used for making the DNBR predictions.  

Table 4 ANN architecture 

Architecture 15 : 15 : 15 

Activation function ReLU 

Number of epochs 1000 

Number of batches 1 

initializers None 

Once the database of MDNBR is created for a range 

uncertain parameters, it will undergo feature selection to 

determine key uncertainty parameters with a strong 

relationship (positive or negative) with the figure of merit 

(FoM), in this case MDNBR. Only those uncertain 

parameters that are strongly correlated with the MDNBR are 

included in the input of the ANN model to predict the 

MDNBR for computational efficiency. 

RESULTS 

The data set generated from this Wilks 5th order 

simulation is fed to the AI algorithm to provide training and 

validation. The AI algorithm should be able to predict the 

MDNBR value. 

CONCLUSION 

The preliminary results of this research shows that 

APR1400 is robust enough to overcome MSLB accident. 

This work is part of ongoing effort to use AI in decision 

making for actions under severe accident conditions. 
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