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1. INTRODUCTION

The Fukushima accident was initiated by an earthquake 

followed by a Tsunami which resulted in a Station Blackout 

(SBO) for an extended period of time due to the devastation 

and failure to restore AC power. This drew the industry’s 

attention to the importance of enhancing the existing plants’ 

coping capabilities with an extended SBO as a possible risk. 

A SBO occurs as a result of loss of all offsite power together 

with the loss of all on-site power due to failure of the 

Emergency Diesel Generators (EDGs) (Lee et al., 2014). As 

a result of loss of all AC power sources during an extended 

SBO, the main motor driven feedwater pumps are lost. The 

Turbine Driven Auxiliary Feedwater Pumps (TD-AFWPs) 

pickup but are eventually lost within 8 hours when the 

batteries become unavailable. After the battery depletion, the 

secondary heat removal is lost and the plant undergoes a 

severe accident, unless proper mitigation strategies are 

implemented.  

A number of mitigation strategies have been proposed to 

enhance the plant’s coping capability. These are reflected in 

a set of high level candidate actions to guide the staff to 

mitigate the accident and minimize its consequences. FLEX 

strategies have been proposed to enhance the plant’s coping 

capabilities with extended design conditions and beyond 

design basis accidents. It involve three phases: firstly, 

installed equipment will be utilized; secondly, portable onsite 

equipment and consumables need to be utilized for the 

transition phase until further off-sire resources are available 

to sustain the required functions and provide long-term 

cooling. The successful implementation of FLEX requires a 

controlled and systematic approach to transition to mobile 

equipment providing protection, access and connections for 

the portable equipment to enable key safety functions to be 

maintained despite a postulated extended loss of normal AC 

power and loss of normal access to the ultimate heat sink. 

However, the effectiveness of this strategy relies on a 

number of uncertainties that need to be quantified before they 

can be deemed successful. This necessitates conducting a 

significant number of simulations to survey possible 

combinations of initial, boundary and design conditions, 

which may be time consuming. Therefore This work, builds 

on a previous work by the second author (Ricardo and Diab, 

2019) where the Best Estimate Plus Uncertainty (BEPU) 

approach is implemented. It is a modern and technically 

sound approach that utilizes best estimate methodology 

including an evaluation of the uncertainty in the calculated 

results (Musoiu,2019). It provides a more realistic safety 

margin and helps improve the emergency operating 

procedures to prevent progression into a severe accident. In 

this study, uncertainty quantification method using the 

Wilks’ formula is employed to identify the success window 

of FLEX strategy with a 95% confidence level and 95% 

probability. 

This work uses the results of the BEPU analysis to 

provide a database of the thermal hydraulic response to train 

an Artificial Intelligence (AI) algorithm. AI is used as an 

alternative approach that relies on data-driven models to 

provide a fast design tool that can predict the success window 

of the mitigation strategy. This paper attempts to explore the 

possibility of using AI to predict the success window of 

FLEX strategy for APR1400. 

2. METHODOLOGY

This section describes the methodology followed in this 

work and can be divided into two main sub-sections. The first 

section describes the BEPU analysis using the thermal 

hydraulic model and the second section describes the 

artificial neural network model.  

2.1 Thermal Hydraulic Model for BEPU Analysis 

The first step is to develop a thermal hydraulic model of 

APR 1400 under SBO scenario. This is achieved using the 

realistic thermal hydraulic system code, MARS-KS. The 

system nodalization used is illustrated in Fig.1 reflects the 

Reactor Coolant System (RCS) which consists of Reactor 

Pressure Vessel (RPV), two Hot Legs, four Cold Legs and 

four Reactor Coolant Pumps (RCPs). A Pressurizer (PZ) is 

connected to the Hot Leg and at its top, Pressurizer Safety 

relief Valves (PRSVs) and Safety Depressurization System 

(SDS) were modelled to simulate release of RCS coolant in 

case of depressurization. On the secondary side, two Steam 

Generators (SGs) whose water level is automatically 

controlled via the Main Feedwater System (MFWS). The 

steam from the SGs is directed to the turbine through the 

Main Steam Line (MSL). Six Secondary Main Steam Safety 

Valves (MSSVs), two Main Steam Line Atmospheric 

Depressurization Valves (MSL-ADVs), two Main Steam 

Line Isolation Valves (MSLIVs) and Turbine Bypass Valve 
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(TBV) are modelled on the MSL connected to the upper head 

of the SGs. The MSSVs prevent over pressurization of the 

SG automatically, TBV is used to isolate the Turbine and the 

ADVs are used to depressurize the SGs by the operator. The 

turbine, is represented using a time dependent volume as 

boundary condition. Similarly, the containment is 

represented by a time dependent volume.  

2.1.1 Base Case 

A base case was simulated for an SBO initiated from the 

nominal reactor conditions. The steady state calculation was 

performed, and the model results compared to the 

corresponding values reported in the Design Documents of 

APR1400 as shown in Table 1.  

Table 1 : APR 1400 Steady State 

When an SBO occurs, the reactor is shut down and the 

TDAFWPs start automatically. After 3 seconds the RCP seal 

leakage occurs as a result of seal failure due to loss of 

component cooling, which further challenges the plant. After 

8 hours the battery is lost, at which time, the turbine drive 

auxiliary water pumps (TDAFWPs) are lost.  

To enhance the plant’s coping capability, the FLEX 

strategies should be implemented. Within 30 minutes, the 

operator opens the atmospheric dump valve (ADV) to create 

a flow path to cool down the system according to the 

emergency operating procedures (EOPs). Subsequently, the 

mobile FLEX pumps are connected to the primary and 

secondary system, within 2 hours, for external water injection 

into the primary system and secondary systems, respectively. 

However, they are not able to inject water into the system 

unless the system pressure reaches the pump shutoff pressure. 

The FLEX strategy is considered successful if the system 

copes with the accident for a mission time of 72 hours. A 

severe accident can be avoided if the battery lasts up to 8 

hours which allows enough time for the FLEX equipment to 

be aligned. However, injection is achieved only if the system 

pressure drops below the shutoff head of the mobile pumps 

which are 1.2 MPa and 0.23 MPa, respectively. 

2.1.2 Model for BEPU Analysis 

The thermal hydraulics code is coupled to a statistical 

tool, DAKOTA, to assess the impact of the uncertainty 

parameters on the performance metrics that reflect the 

success of the FLEX strategy using Python programming 

language to provide the communication interface as shown in 

Fig 2. The uncertainty analysis is performed using a set of 

uncertain parameters derived from key phenomena that 

govern the accident progression as identified in previous 

studies (Kang et al., 2013, Kozmenkov et al., 2017 and Lee 

et al., 2014) and shown in Table 2. Subsequently, the 

uncertainties are propagated through the thermal hydraulic 

model for uncertainty quantification.  

Figure 2 : Uncertainty Analysis Framework 

A dataset of the system response is generated for 

randomly selected values of the uncertain parameters 

represented a priori by range and distribution. The safety 

metric for this problem is the peak cladding temperature. A 

peak cladding temperature (PCT) of 1477K, corresponds to a 

core exit temperature of 922K indicates the onset of a severe 

accident and is used to transition to the severe accident 

management guidelines (SAMG). Therefore, a PCT less than 

1477K  is indicative of the success of the Flex strategy. 

Figure 4 shows the PCT value during the base case transient. 

Figure 1 : MARS-KS Nodalization 
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Table 2 : SBO PIRT 

With the completion of the uncertainty analysis, a dataset 

of 2500 samples is obtained for the system response. Next, 

this dataset is used to train and validate the ANN which will 

be described in the following subsection.  

2.2 AI Model Development 

The AI algorithm utilizes the artificial neural network 

(ANN) technique which has been proven successful for 

various health monitoring and optimization studies in a 

number of disciplines including nuclear power plant accident 

diagnostics. 

The ANN mainly consists of an input layer, one or more 

hidden layers, and an output layer as shown in Fig. 3. Each 

layer includes multiple processing units called artificial 

neurons that are connected to each to form the structure of the 

network. The network is assembled using a combination of 

transfer functions, constrained within a number of hidden 

layers than can be used to model the data by deducing the 

mathematical function that reflects the statistical correlation 

between the inputs and output performance metric. 

Information from the input layer is propagated forward to 

estimate the output by iteratively setting appropriate weight 

factors that reflect the strengths of the relationship between 

the output and input parameters via weight factors. Next, the 

error between the estimated output and pre-existing output is 

back propagated to adjust the weight factors.  

During the training phase, the AI model is tuned and 

optimized using the database provided by the thermal 

hydraulics model. Subsequently, the AI model is validated 

against the remaining sub-set (test data). The developed 

model can be used to provide a reliable prediction tool to 

verify the emergency operating procedures and ensure the 

successful implementation of the mitigation strategy. 

Figure 3 : Neural network representation 

RESULTS 

The success window of FLEX strategy strongly depends 

on the time gap between injection time using FLEX portable 

pumps and the time at which the Turbine Driven Auxiliary 

Feedwater Pump (TDAFWP) stops. The PCT is less than 

1477K when Flex pumps start within 1 hour of the accident. 

However, the chances for PCT to exceed 1477 K increase 

when the injection using FLEX portable pumps is delayed. 

On the other hand, when stops earlier (for example, if the 

battery depletion time is less than 8 hours), the chances of 

PCT to reach or exceed 1477K is higher. With that said, for 

all tested cases the failure of FLEX strategy is very rare as 

illustrated by Figure 4. 

Figure 4 : Success Window for Flex Strategy 

The data set generated from this Monte Carlo simulation 

is fed to the AI algorithm to provide training and validation. 

For the AI algorithm, this is a classification problem. It 

should be able to identify the cases where the strategy 

succeeded and those cases where the strategy failed. 

However, sometimes, success cases are confused as failed 

cases and vice a versa. Figure 5 shows the confusion matrix 

which summarizes the degree of success of the AI algorithm 

in predicting successful cases as successful and failed cases 

as failed. The AI model can accurately classifies the 

successful cases as illustrated by the Confusion Matrix in Fig. 

5. The true success predictions are 1519 out of 1873 cases.

PCT (K) 
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However, as mentioned earlier, the failure of FLEX 

strategy is rare and represents only 2% of the simulated cases 

which produces imbalanced dataset. An imbalanced dataset 

gives poor accuracy for the minority subset of the data that 

used to train the AI algorithm, therefore under-sampling and 

over-sampling techniques were used to balance the data. To 

improve the accuracy and avoid overfitting, Monte Carlo 

sampling was used to generate a large database. After 

splitting the data for training the algorithm, under-sampling 

is applied on the success cases from the training set by 

selecting a number of success cases randomly. Also 

oversampling is applied on the failed cases in the training 

dataset by duplication the failed cases and selecting a number 

of failed cases randomly. These two techniques increase the 

fraction of failed cases and produce balanced dataset, which 

lead to increase the accuracy of the model in predicting the 

success (0.95) and failure (0.77) of operators action to 

implement the FLEX strategy as shown in Table 3. 

Figure 5 : Confusion Matrix 

Table 3 : Prediction Accuracy using f1-Score 

Precision Recall F1-Score Support 

Fail 0.6687 0.9098 0.7708 244 

Success 0.9857 0.9325 0.9584 1629 

Overall accuracy 0.9295 1873 

CONCLUSION 

The results of this research shows that APR1400 coping 

capability for extended SBO is enhanced using the FLEX 

strategy with extremely low failure rate. This confirms the 

effectiveness of the emergency operating procedures as 

evidenced by the successful time window for operator action 

using BEPU analysis. Moreover, the AI algorithm is capable 

of predicting the success window of implementing the FLEX 

strategy with acceptable accuracy. However, because of the 

high reliability of FLEX strategy, the failed cases were 

limited causing an unbalanced dataset. To overcome the 

unbalanced dataset, a larger data set is needed. Accordingly, 

under-sampling and oversampling techniques need to be 

applied. This work is part of an ongoing effort to use AI in 

the decision-making process regarding the implementation of 

high-level candidate actions during severe accident 

mitigation.  
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