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Part I: SBO condition – Simulation – MARS-KS

Figure2– APR 1400 nodalizationJunghyun Yun, Taewan Kim, Jonghyun Kim,"Verification of SAMG entry condition for APR1400",Annals of Nuclear Energy,Volume 75,2015.
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Part I: SBO condition – Simulation

➢ Base case model developed and 
compared with DCD documents.

➢ A transient file was written by 
reflecting the components required 
to simulate SBO accident.

➢ As shown in Figures 2 and 3, FLEX 
pumps had been applied on primary 
and secondary sides.

➢ Seal leakage effect were studied 
parametrically and modeled as 
shown in Figure 2.

Figure 3 – FLEX implementation on primary side
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Part I: SBO condition – Simulation assumptions

❑ Eight assumptions were considered to develop SBO simulation code:

➢ FLEX pumps are aligned at two hours after accident initiation.

➢ The seal leakage rate of RCPs is 21 gpm [1] and [2].

➢ The battery power and TDAFWP are depleted after 8 hours operation.

➢ Feed and bleed operation is applied on the secondary side.

➢ Safety injection pump is unavailable.

➢ Shutdown cooling pump is unavailable.

➢ Auxiliary charging pump is unavailable.

➢ Motor driven auxiliary feed water pump is unavailable.
Kang et al. [1]

Westinghouse RCP seal leakage report [2]
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Part II: Uncertainty Analysis

Table I – Uncertain parameters corresponding to different physical phenomena [1], [3], and [4]

Phenomenon Uncertain parameter (symbol)

Thermal power generation in core
Initial total reactor power (P1)

Decay heat power (P2)

Primary system energy accumulation
Fuel heat capacity (P3)

Fuel conductivity (P4)

Primary and secondary systems pressure 

control

Initial pressure in pressurizer (P5)

Set point for pressurizer relief valve (P6)

Initial pressure in the steam generator (P7)

Heat removal (from primary and secondary 

systems)

Multipler for liquid Dittus-Boelter correlation (P8)

Multipler for vapor Dittus-Boelter correlation (P9)

Multiplier for Chen nucleate boiling model (P10)

Coolant flow (primary system)

Initial total mass flow rate (P11)

Total moment of inertia for circulation pumps (12)

Coolant injection by emergency Core 

Cooling Systems ECCSs and mobile pumps 

(primary and secondary systems)

Initial coolant inventory in SITs (P13)

Initial pressure in SITs (P14)

Initial coolant temperature in SITs (P15)

Initial temperature in the mobile pumps (P16)

Table II – Uncertain parameters Characteristics

Symbol Range Distribution

P1 0.98-1.02 Normal

P2 0.92-1.08 Uniform

P3 0.98-1.02 Normal

P4 0.90-1.10 Normal

P5 0.974-1.026 Uniform

P6 0.982-1.017 Uniform

P7 0.974-1.026 Uniform

P8 0.85-1.15 Uniform

P9 0.8-1.2 Uniform

P10 0.8-1.2 Uniform

P11 0.95-1.05 Uniform

P12 0.8-1.2 Uniform

P13 0.88-1.12 Normal

P14 0.93-1.23 Uniform 

P15 0.93-1.23 Uniform

P16 0.94-1.06 Uniform

The identification of uncertain parameters for this work is based on the PIRT

developed by Kang et al. [1] and the uncertainty analysis performed by

Kozmokov et al. [3] and by Lee et al. [4].
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Part II: Uncertainty Quantification

Figure 4– Uncertainty framework
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Part II: AI Implementation – Sampling of data

Figure 5 – Uncertainty regulatory limit USNRC [9] Figure 6 – Adequate samples number 
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Part III: Methodology and results

Figure 7 - Difference between AI and traditional calculation Figure 8 - Difference between AI, ML, and DL
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Part III: Layered approach

Figure 9 – Neural network mechanism
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Part III: Prediction framework

Figure 10 – Database generation framework – Dakota Figure 11 – ANN model workflow Figure 12 – Talos [8] loop

10



Part III: Inputs selection

Figure 13 – Correlation matrix
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Part III: Model’s architecture

Figure 14 – ANN model architecture
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Part III: Optimization and model architecture

Table III – Best model’s hyperparameters found by Talos

Number Hyperparameter Type Value (in this work)

1 Optimizer categorical Adam

2 Initializer categorical Normal

3 Learning rate Numerical 3.0007

4 Activation function (output layer) Categorical Linear

5 Network shape (configuration) Categorical Triangle

6 Epochs Numerical 1000

7
Number of neurons if the first hidden 

layer
Numerical 32

8 Batch size Numerical 41

9 Hidden layers number Numerical 1

10 Dropout Numerical 0

11
Activation function (input layer and 

hidden layers)
Categorical Relu

Figure 15 – ANN model configuration to predict the PCT.
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Part III: Results
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Figure 16 –predicted PCT versus the actual PCT values.

MAE = 0.60 K
RMSE = 0.77 K
R2 =0.93

Figure 17 – Predicted PCT values and USNRC limit.
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Thank you
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