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INTRODUCTION  

    Traditionally nuclear thermal hydraulics and nuclear safety 
relied on numerical simulations to predict the system 
response of a nuclear power plant either under normal 
operation or accident condition. However, this approach may 
sometimes be rather time consuming particularly for design 
and optimization problems. To expedite the decision-making 
process data-driven models can be used to deduce the 
statistical relationships between inputs and outputs rather 
than solving physics-based models. Compared to the 
traditional approach, data driven models can provide a fast 
and cost-effective framework to predict the behavior of 
highly complex and non-linear systems where otherwise 
great computational efforts would be required.  
    The objective of this work is to develop an AI algorithm to 
predict the peak fuel cladding temperature as a metric for the 
successful implementation of FLEX strategies under 
extended station black out. To achieve this, the model 
requires to be conditioned using a database created using the 
thermal-hydraulic analysis code, MARS-KS [1]. In the 
development stage, the model hyper-parameters are tuned 
and optimized using the Talos tool. 

METHODOLOGY 

     The methodology can be best described by dividing the 
work into two parts: generating a database for the thermal 
hydraulic response and developing the AI algorithm.  

Accident Scenario and Thermal Hydraulic Model 

     A station blackout (SBO) is an accident scenario where all 
the plant’s alternating current electric power sources are lost. 
This renders many of the safety systems unavailable which 
may lead to inventory loss, core uncover and threaten the 
plant’s integrity. Accordingly, many utilities have adopted 
the diverse and flexible strategies (FLEX) to enhance the 
coping capability of their advanced nuclear reactors.  
    The peak cladding temperature (PCT) is an important 
metric that can be used to assess the success of the FLEX 
strategies. If the PCT is maintained well below 1477K, the 
fuel integrity can be assured. However, the success window 
of FLEX implementation relies on various initial and 
operating conditions that may be uncertain at the time of the 

accident. This work builds on a previous work [2] by the 
second author, where a best estimate plus uncertainty (BEPU) 
analysis was performed to analyze a station blackout for 
APR1400 nuclear reactor to ensure the successful 
implementation of the emergency operating procedures. A 
model of the plant is used to generate the system response 
using the realistic multi-dimensional thermal hydraulic 
system code MARS-KS V1.4. The SBO model assumptions 
are: 
 FLEX equipment is aligned at 2 hours.
 RCP seal leakage is 21 gpm.
 Battery power is guaranteed for 8 hours.
 Feed and bleed are performed on the secondary side.
 Safety injection pump is unavailable.
 Shutdown cooling pump is unavailable.
 Auxiliary charging pump is unavailable.
 Motor driven auxiliary feed water pump is unavailable.

    The impact of various uncertain parameters on the PCT 
was assessed by building a framework coupling the thermal 
hydraulic code, MARS-KS and the statistical tool, Dakota 
[3], using python programming language. The uncertain 
parameters were identified based on the phenomena 
identification and ranking table (PIRT) developed by Kang et 
al. [4] and on the uncertainty analysis performed by 
Kozmenkov et al. [5] and by Lee et al. 
    A total of 16 parameters were identified as key uncertain 
parameters affecting the PCT. These uncertain parameters are 
summarized in Table I. A partial rank correlation was used to 
examine the independency of the uncertain parameters. Next, 
the uncertain parameters were sampled and propagated into 
the developed thermal hydraulic model, using Dakota to 
produce the minimum number of samples that ensures the 
USNRC 95 percent probability and 95 percent confidence 
requirements. 
    Spearman’s correlation was applied to measure the degree 
of correlation between the input parameters and PCT. The 
accident can be divided into two main phases before and after 
FLEX implementation. To cut down the learning curve for 
the AI algorithm, three parameters were identified for every 
phase, as the main parameters impacting the PCT, as will be 
shown later in this paper. A database of those key parameters 
and the PCT was therefore generated for training the AI 
algorithm as described in the next section.  



Table I: Uncertain Parameters 
Symbol Physical Parameter 

P1 Reactor Power 
P2 Fuel Heat Capacity 
P3 Fuel Thermal Conductivity 
P4 Total Moment of Inertia for RCP 
P5 Set Point for Pressure Relief Valve 
P6 Decay Heat 
P7 Steam Generator Initial Pressure 
P8 Pressurizer Initial Pressure 
P9 Multiplier for Liquid Dittus-Boelter Correlation 
P10 Multiplier for Chen Correlation 
P11 Multiplier for Vapor Dittus-Boelter Correlation 
P12 Initial Total Mass Flow 
P13 Initial Coolant Inventory in SITs 
P14 Initial Pressure in SITs 
 P15 Initial Temperature in SITs 
P16 Initial Temperature from Mobile FLEX pumps 

    It is worth noting that, a sensitivity study revealed that not 
all of the variables of the thermal hydraulic model were 
strongly impacting the peak cladding temperature. Hence, to 
cut down the training time for the AI model, only three input 
features were selected given their strong connection with the 
output as evidenced by their high correlation coefficients 
with the target variable. The features selection was based on 
the results of Spearman’s correlation that was selected 
because of the nonlinearity of the data. Those features are 
reactor power (P1), initial pressurizer level (P8), and the 
multiplier for vapor Dittus-Boelter correlation (P11) as 
clarified below. 

Artificial Neural Network 

    In this work, an artificial intelligence algorithm is 
developed using and artificial neural network (ANN) to 
accurately predict the peak cladding temperature, a 
performance metric to indicate the success of the FLEX 
strategy in enhancing the plant’s capability to cope with a 
station blackout.  
    An ANN architecture is composed of a layer of inputs, one 
or more hidden layers, and an output layer as shown in Fig. 
(1). Within these layers are neurons, mathematical activation 
functions and weighing factors that help the AI algorithm 
deduce the correlation between the output and various inputs. 
    For complex nonlinear problems, like the problem at hand, 
the accurate prediction of the relationship between the inputs 
and output necessitates a deep network structure. For deep 
learning, the neural network is therefore based on multiple 
layers that parametrize the data transformation via weights. 
The objective of the deep neural network is to find the right 
values of these weights that will correctly map the given 
inputs to the corresponding output. 
    For the problem at hand, the output layer includes the 
parameter to be predicted by the AI algorithm, the peak 
cladding temperature in this case. The peak cladding 
temperature is chosen since it provides an indication for the 
successful implementation of the FLEX strategy. On the 
other hand, the input layer includes the NPP initial and 
operating conditions as well as key parameters that reflect the 
most relevant physical phenomena underlying a station 
blackout scenario. These are reactor power, decay heat  

Fig. 1. Deep Learning Model 

power, fuel heat capacity, fuel thermal conductivity, initial 
pressurizer level, set point for pressurizer relief valve, initial 
secondary pressure, multiplier for liquid Dittus-Boelter 
correlation, multiplier for Chen nucleate boiling model, 
multiplier for vapor Dittus-Boelter correlation, initial total 
mass flow, total moment of inertia for RCPs, initial coolant 
inventory in safety injection tanks (SITs), initial pressure in 
SITs, initial coolant temperature in SITs, and initial 
temperature in the mobile pumps. These parameters will 
dictate the value of peak cladding temperature depending on 
the relative correlation strength with the outputs as reflected 
by the assigned weights.  
    The main component in any layer within the neural 
network is the neuron. As shown in Fig. 2, the information 
passed to any neuron, transformed using a weight and a bias 
according to equation (1). 
    The transformed information is passed to the next neuron 
in the next layer after calculating it based on the activation 
function. The neuron’s output is calculated by equation (1): 

Σሺ𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑝𝑢𝑡  𝑏𝑖𝑎𝑠ሻ ൌ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛      ሺ1ሻ 
 

Fig. 2. Neuron, Weight and Bias 

 

    This process is known as forward propagation by which 
the model estimates the peak cladding temperature as output. 
Forward propagation uses a function to compute the output 
of each neuron that is passed to other neurons in next layers, 
this function is actually called activation function or transfer 
function [6]. 

Input Layer 
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    However, the prediction process is not complete without 
comparing the estimated peak cladding temperature to the 
known value from the pre-existing database. This is achieved 
when the forward propagation is complemented by a 
backward propagation step to compute the value by which the 
weights should be altered to minimize the error between 
estimated and the known output values of the peak cladding 
temperature. 
    As previously mentioned, the objective of deep learning is 
to find the appropriate weight associated with every neuron 
in the network relative to the weights of other neurons. This 
process is conducted by monitoring an object function (also 
known as the loss function).  
    This step entails the calculation of a prediction error after 
completing a forward propagation step, followed by the 
calculation of the gradient of error function relative to the 
weights through a backward propagation step, and using the 
chain rule from output layer to the input layer to calculate the 
derivatives of the error (loss) function with respect to the 
weights of the model in each layer. So, the derivative of the 
loss function with respect to model’s parameters as shown in 
equation (2). 

𝜕 𝑙𝑜𝑠𝑠
𝜕 Weight

ൌ
𝜕 𝑙𝑜𝑠𝑠

𝜕 pred. output
∗
𝜕 pred. output
𝜕 Wieght

   ሺ2ሻ 

    This derivative is actually the slope of the object function, 
and determines the degree by which the weights should be 
changed to minimize the value of the loss function which is 
called loss. Hence, minimizing the loss value yields a 
conditioned model with high accuracy of prediction.  
    This process is applied to all neurons within the network to 
evaluate the performance before the weights are adjusted for 
another iteration, as explained by Fig. 3. For simplicity let’s 
suppose that we only have one input, one hidden neuron, and 
one output.  

Fig. 3. Deep Learning Mechanism 

    Minimizing the loss function is the objective of the 
learning process and it is done via the optimization algorithm 
in such a way that the weights are updated iteratively until the 
output is predicted with the acceptable accuracy.  
    One of the most important optimization algorithms is the 
so-called gradient descent algorithm. The algorithm starts by 
assigning random values to the model parameters and then it 
computing the loss function and its gradient (derivative) with 
respect to those parameters at a given point. 
    At very point (parameter) the slope is evaluated until the 
slope vanishes. This process is actually controlled by the 

learning rate which determines how big a step the algorithm 
requires to reach the global minimal from the initializing 
point.  

OPTIMIZATION 

    This is the most time-consuming process, which can be 
significant depending on the parameters size and the 
searching method used. Different search methods are 
available, the grid search method is the most time consuming 
since it considers all the values defined in the search space. 
For computational efficiency, the random search approach 
that was therefore selected [7]. The random search method 
was implemented through the Talos tool [8]. More than 1500 
models were tested by defining a search space for parameters 
selection as shown in Table II. The best model is composed 
of one input layer, two hidden layers with 32 neurons (16 
neurons in each layer) and an output layer. The input layer 
includes 3 parameters selected using Spearman’s correlation. 

The selection was based on their high correlation values with 
the peak cladding temperature as shown in Figure (4). 

RESULTS 

    A Monte Carlo simulation with a sample size of 924 runs 
was generated using random seeding for a total of 16 input 
variables representing the input features and one representing 
the output variable (PCT) to be predicted by the neural 
network. As mentioned earlier, a sensitivity study was 
conducted to assess the key parameters the impact the PCT 
the most for every phase of the accident: before and after 
FLEX implementation. For brevity, the discussion will be 
limited to the first phase of the accident, i.e. before FLEX 
implementation. For this phase, three input features (namely, 
reactor power: P1, pressurizer initial pressure: P8, and 
multiplier for vapor Dittus-Boelter correlation: P11) were 
selected due to their high correlation coefficient with the 
target variable (PCT: P17). This is depicted in Figure (4). The 
developed AI algorithm was trained to learn the inherent 
knowledge about the NPP system undergoing a station 
blackout, by processing the data set prepared using the 

Table II: Parameters used in Talos Tool 

Parameter Range/Descriptors 

Learning rate (0.001, 10, 10)

Neurons  [4, 8, 16, 32, 64, 128]  

Hidden Layers [0, 1, 2,3] 

Batch Size (5, 50, 5)

Epochs [100, 500, 1000]  

Dropout (0, 0.5, 5)  

ANN’s architecture [brick, funnel, triangle]  

Optimizer [Adam, Nadam, RMSprop, SGD] 

Loss Functions [mean_squared_logarithmic_error, 
mean_squared_error]  

Activation Functions [relu, elu]  

Kernel Initializer [normal, uniform]  

Last activation [linear] 

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18



thermal hydraulics system code, MARS-KS. During the 
training process, the interneuron connection strengths so 
called weights are tuned to store the salient features that 
characterize the data by minimizing the loss function.  
    Once trained, the model is tested using an unseen sub-set 
of the pre-existing database to validate its ability to accurately 
predict the PCT based on a set of initial and operating 
conditions. 

    The PCT predicted values were compared to the values 
obtained from the thermal hydraulic model. The prediction 
results are in reasonable agreement with the known values for 
PCT as shown in Figure (5). 

Fig. 5. AI Model Prediction versus the Known PCT Values 

CONCLUSION 

     In this work, a realistic best estimate plus uncertainty 
simulation of the NPP response to a station blackout was 
generated using MARS-KS code coupled with Dakota. This 
database was used to train an AI algorithm developed to 
predict the peak cladding temperature as an important safety 
metric to assure the fuel integrity under the accident condition 
and hence used to assess the success of the FLEX strategy. 
The deep learning model was able to predict the PCT with 

reasonable accuracy. As a continuation of this work, the 
model will be generalized to explore the reliability of its 
prediction under different accidents conditions. 
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