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1. Introduction

This paper presents preliminary results of STREAM 
(Steady-state and Transient REactor Analysis code with 
Method of Characteristics) adopting linear source 
approximation in 3D/2D Method of Characteristics 
(MOC) / Diamond Differencing (DD). STREAM, a 
neutron transport analysis code, has developed to 
perform a whole LWR core simulation in UNIST CORE: 
group constants generation as a lattice code, and direct 
three-dimensional whole-core calculation. There have 
been suggested various methodologies regarding 
deterministic neutron transport analysis for three-
dimensional core simulations.  

A 2D/1D method solves 3D problems as a coupled 
system of radial transport and axial transport or diffusion. 
The 2D/1D methods are considered the best option in 
LWR 3D neutron transport analysis in accuracy and 
computation efficiency; thus, DeCART, nTRACER, and 
MPACT select this method [1-3]. However, the 2D/1D 
method has some weaknesses; unstable convergence 
behavior for a problem with high leakages, and 
integration over a square pin region for an axial neutron 
leakage. [4] 

A direct 3D MOC approach has been presented to 
eliminate approximations in the 2D/1D method [5]. 
OpenMOC with 3D MOC, which is developed in MIT, 
successfully has resolved the memory burden issue in the 
direct 3D MOC transport calculation. However, the long 
run time remains an issue in the 3D MOC. 

Recently, UNIST CORE proposed a new 3D neutron 
transport method to resolve the 2D/1D method's issues 
and the direct 3D MOC method. The proposed method, 
which is named the 3D method of 
characteristics/diamond-difference (MOC/DD), is 
implemented in the STREAM. This method constructs 
3D flux and source as a combination of the 2D radial and 
the 1D axial components. It does not use the axial solver 
and not homogenizes the axial source into a pin-wise 
square cell. The 3D MOC/DD method is a 2D/3D 
method and a compromise between the 2D/1D and direct 
3D methods [4]. 

In the 2D/3D MOC/DD method, the axial neutron 
source occupies a part of the source in the MOC solver. 
The axial source is a function of the source region and 
the neutron streaming angle, which depends on the flat 
source region in a radial direction. The STREAM3D 
shows good agreement for calculation results when using 

a flat source with source regions of properly small 
meshes. The memory usage and calculation time raise as 
increasing the number of source regions. 

In order to reduce memory usage and calculation time, 
the linear source (LS) approximation applies to the 
2D/3D MOC/DD method. R.M. Ferrer proposed the LS 
approximation to improve accuracy while reducing the 
number of source regions by applying a linear source 
approximation to the 2D MOC in the CASMO code [6]. 
A.P. Fitzgerald introduced the linear source 
approximation used in 2D CASMO to MPACT using the 
2D/1D MOC method, resulting in the accuracy 
improvement [3]. In this study, the method is extended 
to be applicable to not only fission scattering sources but 
also surface sources.  

The paper introduces the 2D/3D MOC/DD method 
with the LS approximation briefly and presents 
preliminary results in simple pin-cell models. 

2. Methods

2.1 2D/3D MOC/DD Method with LS Approximation 

The 2D/3D MOC/DD method with the flat source 
approximation is well presented in Choi's paper [4]. In 
the 2D/3D MOC/DD method, the 3D flux and source are 
constructed as a combination of the 2D radial and the 1D 
axial components using a union radial (or x-y) mesh for 
all axial planes. The 3D angular flux, scalar flux and 
source are expressed as follows: 

(1) 

where 𝑚 is a source region, 𝑧 is a coordinate in the 
axial direction, Δ𝑧 is the axial mesh size, 𝑧! and 𝑧" are 
a lower and a upper limits of axial domain, respectively, 
𝑘 is a track in MOC ray segment belongs to the source 
region, 𝑚	(𝑘 ∈ 𝑚). 𝑖 is an azimuthal direction, and 𝑗 is a 
polar direction. 𝜓#,%,&

'  is angular flux along the track 
distance, 𝑠, 𝜙.(

'  is region averaged scalar flux, 𝑄.#,%,(
'  is 

track averaged fission and scattering source.  
The MOC equation is derived on the x-y plane in the 

middle of the axial mesh in the source region, as depicted 
in Fig. 1. A track-based simplified transport equation 
integrated over an axial domain dividing it by the axial 
height is given by  
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The term of 
)*+,-!
./

𝜓#,%,&
',! (𝑠) on the right-hand side of 

Eq.(2) plays role of a surface source from the bottom 
plane. The flat source approximation is used for this 
surface source to simplify the equation so that the surface 
source can be merged with the fission and scattering 
source [4]. 

   (3) 

where 𝜓0.#,%,(
',∓  is the x-y plane region-averaged angular 

flux. 

 
Fig. 1. Diagram of the track length, 𝑡!,#,$% = 𝑡!,#,$/ cos 𝜃#, on  
x-y plane in source region, m, in the middle of the axial mesh. 
 

The LS approximation considers both fission and 
scattering source and surface source to change as track 
position in x-y source region. The LS for fission and 
scattering, 𝑄.#,%,&

',1 , and the surface LS, 𝑍̅#,%,&
',1 ( =

)2#3-!
.4

𝜓0.#,%,(
',∓ ), along the track length, 𝑡#,%,&5  are assumed to 

have the following forms: 
   (4) 

   (5) 

where 0 ≤ 𝑠 ≤ 𝑡#,%,& , 𝑞.#,&,(
',1  and 𝑞8#,%,(

',1  are expansion 
coefficients for the LS of fission and scattering, 𝜁#̅,%,&

'  and 
𝜁:#,%,(
'  are expansion coefficients for the surface LS. 
Putting Eqs.(3)-(5) into Eq.(2), then the track based 

transport equation with the linear source is described as 

   (6) 

Integrating of Eq.(6) along the projected track length 
in the source region, m yields the characteristics equation, 
then outgoing angular flux is derived as  

   (7) 

where 
 ,  (8) 

 ,  (9) 

 , (10) 

𝜓678,#,%,&
',1  and 𝜓#3,#,%,&

',1  are outgoing and incoming 
angular fluxes to the ray segment, Δ#,%,&

5' ;= 𝜓678,#,%,&
',1 −

𝜓#3,#,%,&
',1 = is the change in angular flux. The coefficients, 

𝐹9 and 𝐹: are pre-computed and saved as hash-table. 
 

2.2 Linear Source in Local Coordinate Systems 
 
The source is given differently depending on track 

locations in the source region; thus, it is necessary to 
define a local coordinate system in each source region. 
Before defining track location in the local coordinate, the 
centroid in the global coordinate is pre-calculated with 
the numerical method. The centroids (𝑋(; , 𝑌(; )  are 
defined as follows [6]: 

   (11) 

where 𝑑# is an azimuthal angle dependent ray spacing, 
𝜔# and 𝜔% are weights for the azimuthal and polar angles, 
respectively. 

The spatial coordinates (𝑋, 𝑌) in the global system are 
related to track length as follows: 
 ,  (12) 

 ,  (13) 
where 𝜉#,(  is an angle dependent adjusting factor to 

conserve volume. The local coordinate (𝑥, 𝑦) is defined 
as (𝑋 − 𝑋(; , 𝑌 − 𝑌(; ) , and ;𝑥#,&,(; , 𝑦#,&,(; =  is the track 
midpoint coordinates in the local system.  

 
2.3 Region-averaged Angular Flux Moments 

 
The isotropic fission and scattering LS on x-y plane is 

considered as: 

   (14) 

The coefficients for the source along a track in Eq.(4) 
are determined by 
 ,  (15) 

 .  (16) 
In the same way of the fission and scattering source, 

the surface LS on x-y plane is considered as: 
   (17) 
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The coefficients for the source along a track in Eq.(5) 
are determined by 

, (18) 

.  (19) 
The track-averaged angular flux and the first-order 

spatial moment of the angular flux along each track are 
defined as: 

(20) 

 (21) 

The region-averaged angular flux is defined as: 

 (22) 

where ΔG#,%,(
5' = −∑ Δ#,%,&

5'
&∈( . 

The region-wise angular flux moments are obtained by 
the discrete-to-moments operators, 

 (23) 

 (24) 

2.4 Cell-averaged Scalar Flux and Source 

The scalar flux moments, 𝜙I⃗(
' = K𝜙(

',1, Φ(,=
' , Φ(,>

' M
?

are calculated as, 
  (25) 

(26) 

(27) 

The source moments, 𝑄I⃗(
' = K𝑞.(

',1, Q(,=
' , Q(,>

' M
?

 are
obtained by applying 

(28) 

where Σ2,(
'"→'is scattering cross section matrix,	𝜐ΣA,(

' is
nu-fission cross section matrix, 𝜒(

'  is fission spectrum, 
𝑘BAA  is eigenvalue. According to numerical integration 
of Eq.(14) over a source region [6], the correlation 
between source coefficients and source moments is  

(29) 

where 𝑀(,== = 〈𝑥, 𝑥〉/4𝜋, 𝑀(,>> = 〈𝑦, 𝑦〉/4𝜋, 
𝑀(,=> = 〈𝑥, 𝑦〉/4𝜋.  

2.5 Region-averaged Surface Source Moments 

The region-wise angular flux plane interface at z+ is 
defined as below, and it is used as the surface source at 
the bottom position of the upper plane. 

(30) 

where . 
According to numerical integration of Eq.(17) over a 

plane, surface source moments can be updated in the 
same way as Eq.(30). Then, surface source coefficients 
can be updated from the bottom plane as below: 

(31) 

where 
(32) 

(33) 

(34) 

(35) 

    (36) 

An assembly shares the same source region radially 
even in a different axial configuration since the 
characteristics of MOD/DD methods; therefore, Eqs.(32)
-(36) are pre-computed during centroids calculation and 
stored as coefficients.  

The computation algorithm of 2D/3D MOC/DD with 
LS approximation  is summarized in Fig. 1. 

ζ g
i, j ,k = ζ g

i, j ,m +ζ i, j ,m
g ,x xi,k ,m

c +ζ i, j ,m
g ,y yi,k ,m

c( )
ζ̂ g
i, j ,m = cosθ j cosϕ iζ i, j ,m

g ,x + sinϕ iζ i, j ,m
g ,y( ) ξm

ψ i, j ,k
g ,0 =

ψ i, j ,k ,m
g ,0 (s)ds

0

′ti , j ,k∫
ds

0

′ti , j ,k∫
=
qi,k ,m
g ,0 +ζ g

i, j ,k

!Σ tr ,m
g −

′Δ g
i, j ,k

!Σ tr ,m
g ′ti, j ,k

ψ̂ i, j ,k ,m
g =

sψ i, j ,k ,m
g ,0 (s)ds

0

′ti , j ,k∫
ds

0

′ti , j ,k∫
=

ψ i, j ,k
g ,0 −ψ out ,i, j ,k

g( )
!Σ tr ,m
g

+
′ti, j ,k
2

qi,k ,m
g ,0 +ζ g

i, j ,k( )
!Σ tr ,m
g +

q̂i, j ,m
g ,0 + ζ̂ g

i, j ,m( )
!Σ tr ,m
g

′ti, j ,k
6

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ψ i, j ,k
g ,0 =

ψ i, j ,k
g ,0 ′ti, j ,kdi

k∈m
∑

′ti, j ,kdi
k∈m
∑

= 1
!Σ tr ,m
g

qm
g ,0

4π
+ζ g

i, j ,m

⎛

⎝⎜
⎞

⎠⎟
+
di cosθ j
Am !Σ tr ,m

g ′Δ g
i, j ,m

+
di

4π Am !Σ tr ,m
g qm,x

g xi,k ,m
c ti, j ,k

k∈m
∑ + qm,y

g yi,k ,m
c ti, j ,k

k∈m
∑⎛

⎝⎜
⎞
⎠⎟

+
di

Am !Σ tr ,m
g ζ i, j ,m

g ,x xi,k ,m
c ti, j ,k

k∈m
∑ +ζ i, j ,m

g ,y yi,k ,m
c ti, j ,k

k∈m
∑⎛

⎝⎜
⎞
⎠⎟

ψ i, j ,m
g ,0

x
=

ai, j
x ψ̂ i, j ,k ,m

g ,0 ξm + xi,k ,m
in ψ i, j ,k

g ,0( ) ′ti, j ,kdi
k∈m
∑

′ti, j ,kdi
k∈m
∑

ψ i, j ,m
g ,0

y
=

ai, j
y ψ̂ i, j ,k ,m

g ,0 ξm + yi,k ,m
in ψ i, j ,k

g ,0( ) ′ti, j ,kdi
k∈m
∑

′ti, j ,kdi
k∈m
∑

φm
g ,0 = 4π ψ i, j ,m

g ,0 ω iω j
i
∑

j
∑

Φm,x
g = 4π

di ai, j
x Ψ̂ i, j ,k ,m

g ,0 ξm +Ψ i, j ,k
g ,0,x( )

′ti, j ,kdi
k∈m
∑ ω iω j

i
∑

j
∑

= 4π ψ i, j ,m
g ,0

x
ω iω j

i
∑

j
∑

Φm,y
g = 4π

di ai, j
y Ψ̂ i, j ,k ,m

g ,0 ξm +Ψ i, j ,k
g ,0,y( )

′ti, j ,kdi
k∈m
∑ ω iω j

i
∑

j
∑

= 4π ψ i, j ,m
g ,0

y
ω iω j

i
∑

j
∑

!
Qm
g = 1
4π

χm
g

keff
νΣ f ,m

′g
!
φm

′g

′g
∑ + Σs,m

′g →g
!
φm

′g

′g
∑

⎛

⎝
⎜

⎞

⎠
⎟

1 0 0
0 Mm,xx Mm,xy

0 Mm,xy Mm,yy

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

qm
g ,0

qm,x
g

qm,y
g

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

qm
g ,0

Qm,x
g

Qm,x
g

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ψ i, j ,m
g ,+ = 2ψ i, j ,m

g ,0 −ψ i, j ,m
g ,− = 2ψ i, j ,m

g ,0 − Δz
2sinθ j

Si, j ,m
g −Qi, j ,m

g ,0( )
Si, j ,m
g ,0 = qm

g ,0 + Zi, j ,m = Qi, j ,m
g ,0 + 2sinθ j Δz( )ψ i, j ,m

g ,−

1 0 0
Ti,m
xc Ti,m

xx Ti,m
xy

Ti,m
yc Ti,m

xy Ti,m
yy

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

ζ g
i, j ,m

ζ i, j ,m
g ,x

ζ i, j ,m
g ,y

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
2sinθ j
Δz

ψ i, j ,m
g ,−

ψ i, j ,m
g ,−

x

ψ i, j ,m
g ,−

y

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Ti,m
xc = di

Am
xi,k ,m
c ti, j ,k

k∈m
∑

Ti,m
yc = di

Am
yi,k ,m
c ti, j ,k

k∈m
∑

Ti,m
xx = di

Am
(xi,k ,m

c )2 ti, j ,k
k∈m
∑ + cos2ϕ i ti, j ,ksi, j ,k

2 12
k∈m
∑⎛

⎝⎜
⎞
⎠⎟

Ti,m
yy = di

Am
( yi,k ,m

c )2 ti, j ,k
k∈m
∑ + sin2ϕ i ti, j ,ksi, j ,k

2 12
k∈m
∑⎛

⎝⎜
⎞
⎠⎟

Ti,m
xy = di

Am
xi,k ,m
c yi,k ,m

c ti, j ,k
k∈m
∑ + cosϕ i sinϕ i ti, j ,ksi, j ,k

2 12
k∈m
∑⎛

⎝⎜
⎞
⎠⎟

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18



Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 22-23, 2020 

 
 

 
Fig. 1. Algorithm of 3D neutron transport calculation with LS 
approximation in STREAM. 

 
3. Preliminary Results  

 
This paper shows results of a simple model as a 

starting step. The benchmark (Fig. 2) consists of two 
assemblies of 4 cells with one group UO2 cross-section 
to demonstrate the impact of the LS approximation 
clearly. The right side is given as void boundary 
condition only, the boundary condition for the remaining 
five sides is reflective. The pin pitch is 1.26 cm, and it is 
divided into a square mesh. The total axial height is 20 
cm, and the mesh size is 1 cm.  
 

 
Fig. 2. Simple model of UO2 square cells. 

 

The calculation results are summarized in Table I and 
Figs. 3-6. The reference solution is STREAM result with 
fine-mesh with denser ray-spacing condition. Figs. 3-4 
shows source distributions, which, consists of fission and 
scattering source and surface source, along the tracks. 
Figs. 5-6 show the scalar flux distribution along the track. 
LS approximation well estimates real solution in this 
extremely coarse mesh problem. 

Table I: keff results 

Source Radial  
Mesh 

MOC ray 
Δcm/#azi/#pol keff 

Δk
eff

  
[pcm] 

Time 
[sec] 

Flat 126x126 0.005/128/6 1.32151 - 41.0 
Flat 1x1 0.01 / 48 / 6 1.29883 -2268 5.49 

Linear 1.32157 6 11.4 

 
Fig. 3. Angle dependent flat source distribution. 

 
Fig. 4. Angle dependent linear source distribution. 

 
Fig. 5. Scalar flux distribution by flat source approximation.  

 
Fig. 6. Scalar flux distribution by linear source approximation.  
 

4. Conclusions 
 

This paper presents LS approximation in 2D/3D 
MOC/DD methods and shows the impact in the simple 
problem. When the angle-dependent axial source adopts 
LS approximation, the solution is well estimated. In 
future work, the optimization of LS approximation for 
reducing calculation time and detailed performance will 
be analyzed in large-scale problems. 
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