

Investigation of Unified IFBA-GAD Fuel Assembly Design for Soluble Boron Free Reactivity Control

<u>Yeaeun Lim¹, Jae Kyeong Lim², U Gyu Jeong³, Ho Cheol Shin⁴, YuGwon Jo^{4,*}</u>

¹Pusan National University (PNU) ²Kyung Hee University (KHU) ³Ulsan National Institute of Science and Technology (UNIST) ⁴Korea Hydro & Nuclear Power Co., Ltd. Central Research Institute (KHNP-CRI)

Korean Nuclear Society Virtual Autumn Meeting, Korea December 18, 2020

I. Research Background

- 1. Soluble-Boron-Free (SBF) Reactor
- 2. Burnable Absorber Design

II. Design and Results

- 1. Unified IFBA-GAD Fuel Assembly Design
- 2. Numerical Results
- **III. Summary and Conclusions**

Soluble-Boron-Free (SBF) Reactor

Conventional pressurized water reactors (PWRs) can **control the excess reactivity** via

1) the control rods,

2) the burnable absorbers,

and 3) the soluble boron,

where the soluble boron is commonly used for the uniform reactivity control.

In the case of **SBF**, **the soluble boron is not used** to control the excess reactivity. Therefore, SBF's reactivity control system must be able to **precisely control the reactivity** to fill the role of the soluble boron.

Soluble-Boron-Free (SBF) Reactor

Advantages of the soluble-boron-free (SBF) reactor;

1) the elimination of the boron-dilution accident,

2) the simplification of the chemical volume control system (CVCS),

3) the extension of the lifetime of main component in the primary loop, and 4) the removal of Axial Offset Anormaly (AOA).

* Burnable Absorber Design

To overcome these problems, **new burnable absorber designs** such as R-BA and CSBA were proposed **to reduce the initial excess reactivity and the burnup reactivity swing** by utilizing the spatial self-shielding effect for the burnable absorber.

<u>A new burnable absorber named as **unified IFBA-GAD (UIG)** is proposed which combines the two commercialized and proven burnable absorber designs.</u>

Table I. Commercialized burnable absorbers

GAD	IFBA	WABA	Pyrex
 Fuel Thermal Conductivity ↓ Amount of UO₂ ↓ 	 Internal Rod Pressure ↑ 	 Number of Rod Cluster Control Assembly ↓ 	 Number of Rod Cluster Control Assembly ↓
UO ₂ + Gd ₂ O ₃ Cladding	UO ₂ Cladding	Al ₂ O ₃ +B ₄ C (alumina -boron carbide)	B ₂ O ₃ +SiO ₂ (borosilicate glass)

NFCM-0016, Nuclear Fuel Wet Annular Burnable Absorber (WABA) Assembly, May 2017 ML11171A500, Westinghouse AP1000 Design Control Document Rev. 19, June 21, 2011

Fuel Rod Design

The UIG fuel rod is the gadolinia fuel rod $(UO_2-Gd_2O_3)$ coated with a thin layer of ZrB_2 .

UIG's expected advantages

- The UIG suppresses both the initial excess reactivity and the maximum excess reactivity by adjusting the ¹⁰B enrichment in ZrB₂.
- **The spatial self-shielding of the gadolinia** by the IFBA coating allows for longer control over excess reactivity.

Figure 3. Cross-sectional view of UIG fuel rod

Pellet diame	ter, cm	0.8192		
Clad materia	l	ZIRLO		
Clad ID, cm		0.8375		
Clad OD, cm	ı	0.9500		
2351 J 0/	Normal fuel	4.95		
	Gadolinia fuel	1.80		
Stack	UO ₂	10.264		
height	UO ₂ -Gd ₂ O ₃ 4.0%	10.141		
density,	UO ₂ -Gd ₂ O ₃ 6.0%	10.079		
g/cm^3 UO ₂ -Gd ₂ O ₃ 8.0%		10.017		
ZrB ₂ thickne	ess, μm	10.0		
ZrB ₂ density	$r, g/cm^3$	6.08		
$10\mathbf{P}$ at $10\mathbf{P}$ in 7	"D . 0/.	19.9(natural), 25,		
B at% In Z	ID ₂ , 70	50, 75, and 100		

Table	II.	Design	specifications	of	UIG	fuel	rod
raute	11,	DUSIEI	specifications	UI	UIU	ruci	TUU.

Fuel Assembly Design

The number of the UIG fuel rods, the concentration of Gd_2O_3 in the UIG, and the enrichment of ¹⁰B in ZrB₂ were varied for the sensitivity analysis.

Table III. Design specifications of the UIG fuel assembly.

Fuel rod array square	17 x 17
Fuel rod pitch, cm	1.25984
No. of UIG fuel pins	4, 8, 12, 16, 20, 24, and 32

Figure 4. Arrangement of rods in fuel assembly

Sensitivity Analysis in Ray Tracing Parameter

The results were calculated by the lattice physics code STREAM.

MOC variables include ray spacing, azimuthal angles, and polar angles.

Due to the thin layer of IFBA, the ray spacing of the method of characteristics (MOC) to solve the neutron transport equation should be **sufficiently small**.

Figure 5. The representation of MOC characteristic lines

Sensitivity Analysis in Ray Tracing Parameter

The number of the polar angles was fixed to 6.

Table III shows that the differences of k_{inf} 's are less than 62 pcm. The subsequent MOC calculations were calculated with a ray spacing 0.05cm, 48 azimuthal angles, and 6 polar angles.

Ray spacing,	Azimuthal angle divisions				
cm	48	64	80	96	128
0.05	62	15	-8	6	-8
0.01	55	43	25	16	4
0.005	52	32	21	16	0
0.001	50	34	20	14	Ref.

Table IV. Differences in k_{inf} [pcm] for various ray tracing parameters in UIG fuel assembly*.

*The number of UIG pins is 20, the gadolinium enrichment of UIG pin is 4%, the thickness of ZrB_2 is 10 µm, and ¹⁰B enrichment in ZrB_2 is 50%.

KHNP

Comparison Between GAD and UIG Burnable Absorber

Test conditions for the GAD and UIG cases were selected as Table IV for the equivalent critical burnup condition.

Table V. Test conditions of GAD and UIG for equivalent critical burnup.

Burnable absorber	Critical burnup, GWD/MTU	UIG or GAD fuel pins	Gd ₂ O ₃ wt.% in fuel	¹⁰ B at% in ZrB ₂
GAD	35.63	24	4	N/A
UIG	35.64	24	6	100

Table VI. Summary of reactivity comparisons between GAD and UIG.

Unit, pcm	GAD	UIG	Difference
Initial			
excess	10,787	7,554	3,233
reactivity			
Maximum			
excess	14,954	9,990	4,964
reactivity			
Reactivity	6.051	4 402	1 650
upswing*	0,031	4,402	1,050

*Reactivity upswing = maximum excess reactivity – excess reactivity at 100 MWD/MTU.

Figure 6. Comparison of k_{inf} for GAD and UIG

Burnup [MWD/MTU]

Figure 7. Comparison of pin peaking of GAD and UIG ¹⁰

* Sensitivity Analysis of UIG

Critical burnup, peaking factor, and k_{inf} of UIG were investigated.

Figure 9. Comparison of pin peaking of GAD and UIG; the gadolinium enrichments in UIG and GAD pins are 4%, and the ¹⁰B enrichment in ZrB₂ of UIG is 50%.

Figure 8. Critical burnup (where $k_{inf} = 1.0$) according to gadolinium enrichment

Figure 10. k_{inf} vs. burnup of GAD and UIG for various ¹⁰B enrichment in ZrB₂; the gadolinium enrichment is 8%, and the number of pins is 24.

* Sensitivity Analysis of UIG

- The higher ¹⁰B enrichment induces the stronger spatial self-shielding of the gadolinia, which leads to the smaller burnup reactivity swing.

Figure 11. Reactivity difference between GAD and UIG (GAD - UIG) vs. burnup according to the ^{10}B enrichment in ZrB_2 ; the gadolinium enrichment is 8%, and the number of pins is 24.

Table VII. Summary of reactivity comparisons between GAD and UIG for various ${}^{10}\text{B}$ enrichment in ZrB_2^* .

	10 B at%	GAD,	UIG,	Difference,
	in ZrB ₂	pcm	pcm	pcm
	19.9		8,283	417
Initial	25.0		8,179	521
excess	50.0	8,700	7,692	1,008
reactivity	75.0		7,231	1,469
	100.0		6,794	1,906
	19.9	10,377	9,964	413
Maximum	25.0		9,860	517
excess	50.0		9,337	1,040
reactivity	75.0		8,812	1,565
	100.0		8,285	2,092
	19.9		3,633	-11
Desetisites	25.0		3,636	-14
Reactivity	50.0	3,622	3,610	12
upswing	75.0		3,554	68
	100.0		3,474	148

*The gadolinium enrichment is 8%, and the number of pins is 24.

The unified IFBA-GAD (UIG) burnable absorber was proposed based on the combination of the two commercialized burnable absorber.

It takes advantage of the **spatial self-shielding** of the gadolinia by the ZrB_2 coating and mitigates the weakness of the IFBA.

The numerical results show that the UIG suppresses both the initial excess reactivity and the maximum excess reactivity compared to those of the normal GAD, while the increase of the pin peaking is marginal. The ¹⁰B enrichment in ZrB_2 can be adjusted to finely control excess reactivity. As a further study, the proposed UIG burnable absorber design can be applied to the soluble-boron-free SMR core design.

References

- J. Choe, et al., "New Burnable absorber for long-cycle low boron operation of PWRs," Ann. Nucl. Energy, 88, 272-279 (2016).
- X.H. Nguyen, et al., "An advanced core design for soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber," Nucl. Eng. Tech., 51, 369-376 (2019).
- R.L. Simmons, et al., "Integral fuel burnable absorbers with ZrB2 in Pressurized Water Reactors," Nuclear Technology, 80(3), 343-348 (1988).
- Choi S, et al., "Resonance self-shielding methodology of new neutron transport code STREAM," J. Nucl. Sci. Technol. 52(9), 113-1150 (2015).
- International Atomic Energy Agency (IAEA), "Characteristics and Use of Urania-Gadolinia Fuels," IAEA-TECDOC-844, IAEA, Vienna (1996).
- 6. E.D. Walker, "Modeling integral fuel burnable absorbers using the method of characteristics," Ms. Thesis, The University of Tennessee, (2014).

