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1. Introduction

A large-scale integral effect test facility for Sodium-
cooled Fast Reactor (SFR) development has finished its 
construction and installation in Korea Atomic Energy 
Research Institute (KAERI). Under the Sodium 
Integral Effect Test Loop for Safety Simulation and 
Assessment (STELLA) program[1], the STELLA-2 
facility is just about to start the operation and will 
produce various experiment data to build up the 
database.  
The focus of STELLA-2 is on the Decay Heat Removal 
System (DHRS) performance and capability during the 
Design Basis Event (DBE) condition as well as the 
Beyond DBE condition. Therefore, various transient 
analysis was conducted at the design stage for 
comprehensive evaluation[2]. On the other hand, the 
analysis to explore the limit and boundary of the facility 
was also conducted independently. This includes the 
transient behavior during full and/or zero power of the 
air blower for the heat exchangers, full power of the 
Electro-magnetic Pump (EMP) in the loop and etc.  
In this study, the DHRS cooling effect to the primary 
side was analyzed using MARS-LMR code as a part of 
above evaluation by controlling the air flowrate in the 
sodium-to-air heat exchangers in DHRS. The scope of 
this study bounds within the observation of the 
phenomena and discussion about the reason. The 
application of the results will be a next step. 

2. STELLA-2 Facility

The STELLA-2 is a down-scaled test facility to verify 
the performance of DHRS of the reference reactor. At 
the same time, the experiment database is used for 
V&V of safety analysis code[3].  
The STELLA-2 includes all the major components of 
the reference reactor except the nuclear fuel core, the 
steam generator, and the mechanical pump. Instead, the 
electric core simulator, the straight tube-type sodium to 
air heat exchanger and the EMP replaces each 
component. In the STELLA-2, there are four lines of 
DHRS. Two loops are for the passive heat exchanger 
and the other two loops are for the active heat 
exchanger. All four heat exchangers are of same 
capacity.  
The facility was designed to conserve the characteristic 
and transient behavior of the reference reactor and it 
was evaluated at several stages using various means 
and tools including CFD and system code.  

Fig. 1 STELLA-2 Facility Layout 

Fig. 2 STELLA-2 Installation and Control System 

3. MARS-LMR Analysis

3.1 Representative DBE – Loss of Flow (LOF) 

The representative DBE was selected for the cooling 
effect analysis, which is the Loss of Flow (LOF) event. 
This event occurs when all the power supplied to the 
pump is lost and it results in the immediate temperature 
rise of the coolant. One of the main reasons is the Loss 
of Offsite Power (LOOP) and thus the LOF with LOOP 
is usually considered as a representative accident. In 
this study, the LOF + LOOP condition was assumed 
and the transient behavior was observed.  

3.2 Node layout and Assumptions 

The node layout is shown in Fig. 3. Based on the heat 
balance of the reference reactor design, the steady-state 
point was set to match the temperature distribution 



inside the pool and the transient started by rapidly 
reducing the primary sodium flow. The intermediate 
loop flow also stops when the primary pump stops and 
the core heater starts to follow the decay heat curve 
after the flow reduction. To be consistent with the 
safety analysis methodology, each one of heat 
exchangers in passive and active DHRS was not 
working. The calculation was done up to approximately 
50,000 sec.  

Fig. 3 Node Diagram 

4. Results and Discussion

The air flowrate of the passive and active heat 
exchangers were changed from 30% to 80% of 
designed capacity by a step of 10%. The 0% flow is not 
indicated in the following results because the starting 
point of steady-state condition is 0% air flow. The 
result of 100% air flow is also not shown due to 
inconsistent trend caused by unidentified errors in 
calculation input.  

4.1 Temperature Trend 

In Fig. 4, the temperature change according to the air 
flowrate of HXs is shown. It is noted that the higher the 
air flowrate, the larger the ΔT through core in/out 
which results in higher core outlet temperature. 

Fig. 4 Core In/Out Temperature Trend 

In Fig. 5 and 6, the temperature of sodium in the tube 
of HXs are shown. As the air flowrate increases, the 
temperature decrease and the ΔT gets larger.  

Fig. 5 AHX Tube Temperature Trend 

Fig. 6 FHX Tube Temperature Trend 

4.2 Flowrate Trend 

In Fig. 7, the sodium flowrate of primary side is shown. 
With the increasing air flowrate, the natural circulation 
flow decreases. It is seen that the primary side sodium 
flow is the highest at 30% of air flow.  

Fig. 7 Primary Side Flowrate Trend 

In Fig. 8 and 9, the sodium flowrate of HXs tube side 
is shown. As the air flowrate increases, the sodium 
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flowrate induced by the natural circulation also 
increases.  

Fig. 8 AHX Tube Side Flowrate Trend 

Fig. 9 FHX Tube Side Flowrate Trend 

4.3 Discussion 

The temperature rise of core outlet and its trend is not 
quite consistent with the common expectation. If the 
heat transfer through the final heat sink increases by 
increasing the air flowrate, the heat removal from the 
core should increase. And this should lead to lowering 
the core outlet temperature. However, the trend is in 
opposite as seen in Fig. 4.  
One of the reasons can be found in Fig. 7 that the 
primary side sodium flowrate decreases as the air 
flowrate increases. The smooth flow development by 
the natural circulation is doubtful at this point and the 
thermal stratification at the bottom of cold pool can be 
presumed. However, in real situation this may not 
happen owing to the high thermal conductivity of the 
liquid sodium. In the case of STELLA-2 condition, the 
axial conduction within the fluid is large enough to 
influence the thermal energy distribution.  
The MARS-LMR code doesn’t consider the axial 
conduction of the fluid due to its origin and history of 
development based on the water system. Therefore it is 
strongly recommended to re-analyze the same 
phenomena by calculating the axial conduction term. 

Or more directly, the experiment data in near future will 
reveal the truth of reality.  

5. Conclusion

The STELLA-2 is ready for operation and will soon 
produce large database of various transient experiments. 
The DHRS cooling effect to primary side is one of the 
most important aspects and it was observed by 
controlling the air flowrate of final heat exchangers. 
The result of heat transfer including temperature trend 
was inconsistent with the expectation and the cause of 
this opposite behavior was discussed. The liquid 
sodium has high thermal conductivity and thus the 
conduction within itself acts as an important factor. To 
verify this assumption, either re-calculation of fluid 
conduction or experiment data will be needed. 
Therefore, the next step of this study will be the 
verification of conduction term and the application to 
the modification of code.  
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