2020 KNS Autumn Meeting

An Aerosol Transport Analysis in the Marviken Test by SIRIUS Code

강형석*, 손동건, 하광순 *<u>hskang3@kaeri.re.kr</u>

한국원자력연구원(KAERI) 2020. 12. 17

Table of Contents

Research Background & Objectives
Coupled Calculation between CSPACE and SIRIUS

Marviken Experiment by Sweden
Aerosol Transport Test-202b

Calculation of Aerosol Transport by CSPACE & SIRIUS
Aerosol Deposition Model
Comparison Results between Test Data and Calculation Results

Conclusion and Further Work
??

Coupled Calculation between CSPACE and SIRIUS

□ SIRIUS module for predicting an aerosol transport

- CINEMA code development (2011. 7 2017. 6) : Separated calculation
 - ▶ 2017, KNS Autumn Meeting, H.S. Kang, et al.
- CINEMA code improvement (2019. 5 2023. 4) : Coupled calculation

Korea Atomic Energy Research Institute

Marviken Test-202b (1)

Test Procedure & TH Results

- **O** Test duration : 118 min.
- Steam injection to Facility : 40 g/s, 400 °C
 - ▶ H₂: 0.015 g/s, N₂: 1.4 g/s, Water: 3.1 g/s
- **O** Aerosol injection to PZR
 - ✤ Cs : 9.65 g/s, Te : 1.62 g/s, I : 0.83 g/s
 - ✤ CsOH (70.11 kg), CsI (11.07 kg), Te (11.07 kg)

				1.0		
Location		Start of Test	:	End of Test		
		Gas ^O C	Wall ^O C	Gas ^O C	Wall ^O C	
		5000()*				
	vaporization chamber peak	5000(est)*	-	5000(est)	-	
	Vaporization chamber bulk	2000(est)	1600(est)	2000(est)	1600(est)	1
Ì	Pressurizer bottom	340 - 380	285 - 325	385 - 420	340 - 385	
	Pressurizer middle	295 - 310	272 - 286	340 - 355	317 - 330	5
	Pressurizer top	288	275	328	315	
	Pipe L041**	272	252	313	298	
	Pipe L063**	158	96	167	101	
	Relief tank	29	25	34	30	
	4					

No steam condensation

Marviken Test-202b (2)

Test Data

- Approximately 50% of the injected aerosol mass was discharged to the relief tank.
- Approximately 10% of the injected aerosol mass was not recovered.

PART OF THE SYSTEM	Cs		I		Те	
	kg	%	kg	7	kg	%
VAPORIZATION CHAMBER	1.04	1.66	0.07	1.32	0.23	2.24
WALL RUN-OFF TRAYS	0.73	1.16	0.07	1.32	0.10	0.97
PRESSURIZER BOTTOM	23.55	37.51	1.92	38.12	3.71	35.72
PRESSURIZER LOWER PART	2.22	3.53	0.17	3.42	0.36	3.45
PRESSURIZER MID PART	0.39	0.62	0.03	0.53	0.12	1.13
PRESSURIZER UPPER PART	0.40	0.64	0.03	0.66	0.06	0.57
PRESSURIZER TOP	0.41	0.66	0.03	0.65	0.07	0.64
PIPE LO4*	0.20	0.33	0.01	0.22	0.05	0.52
PIPE LO5*	2.64	4.21	0.23	4.51	0.19	1.78
PIPE LO6*	0.18	0.29	0.01	0.27	0.08	0.77
RELIEF TANK	30.45	48.50	2.42	47.98	5.33	51.39
FINAL PARTICLE FILTER	0.02	0.03	0.00	0.08	0.01	0.13
MISCELLANEOUS	0.54	0.85	0.05	0.94	0.07	0.69
TOTAL MASS RECOVERED	62.78	100	5.04	100	10.38	100
TOTAL MASS FED	68.24	-	5.80	-	11.07	-
TOTAL MASS/TOTAL FEED	-	92.00	-	86.85	-	93.76
	1	i'	1	1	1	i

Korea Atomic Energy Research Institute

Structure of SIRIUS Code

Transport Equation in SIRIUS Code

KAER

Aerosol Deposition Model in SIRIUS Code

Aerosol deposition model

O Ref : NED, Vol. 107, pp. 327-344 (1988), Michael Epstein

$$\mathbf{D} \lambda_t = \lambda_{sed} + \lambda_{imp} + \lambda_{diff} + \lambda_{th} + \lambda_{tub}$$

Sedimentation

KAERI Korea Atomic Energy Research Institute

CSPACE Input

CSPACE Results

Korea Atomic Energy Research Institute

KAERI

Steam Velocity

Steam Temp.

SIRIUS Input & Model

Marviken Test-202b

- **O** PZR : 5 Node
- **O** Aerosol injection rate
 - → CsOH : 9.9 g/s (0 7080 s)
 - ✤ Csl: 1.69 g/s (60- 7080 s)
 - Te : 1.62 g/s (240- 7080 s)

• Model constants

- **>>** Collision shape factor(γ): 1.0
- **>>** Settling shape factor(χ) : 1.0
- **Density correction factor**(*a*) : 1.0

Applied deposition model

	Sedimen- tation	Inertia Impactio n	Thermo- phoresis	Diffusio- phoresis
PZR	0	X	0	0
L04	Х	X	0	0
Elbow1	Х	0	0	0
L05	Х	Х	0	0
Elbow2	X	0	0	0
L06	X	X	0	0

Diffusiophoresis

(Diffusion Coefficient)

$$u_{diff} = \frac{F\beta_{12}}{\tilde{\rho}_1} \ln\left[\frac{P_v - P_1(0)}{P_v - P_1(\delta)}\right]$$
$$\beta_{12} = \frac{\tilde{D}_{12}\tilde{\rho}_1}{\delta} \qquad \lambda_{diff} = \frac{u_{diff}}{h_{eff}}$$

Korea Atomic Energy Research Institute

Thermophoresis (Wall Temp., Nu, Pr)

$$\lambda_{th} = \frac{u_{th}}{h_{eff}}$$

SIRIUS Results

□ Airborne Aerosol Mass in PZR

• Calculated results accurately predict the test data with an error range of approximately 3%.

Deposited Aerosol Mass

- Calculated results predict the test data with an error range of approximately 30%.
- In the SIRIUS calculation, there is no disappeared mass during the transportation as shown in the measured data.

		Test	SIRIUS	Difference [%]
Deposited Aerosol Mass on the PZR Wall [kg]	Cs	23.55	18.02	-23.4
	I	2.18	1.53	-29.8
	Te	4.32	2.94	-31.9
Deposited Aerosol Mass on the Pipe L05 Wall [kg]	Cs	2.64	2.62	-0.7
	I	0.23	0.22	-4.3
	Te	0.19	0.42	+12.1
Discharged Aerosol Mass to Relief Tank [kg]	Cs	30.45	39.73	+30.4
	I	2.42	3.40	+40.4
	Te	5.33	6.65	+24.7
Ratio of injected aerosol to recovered aerosol [%]	Cs	92.00	100	-
	I	86.85	100	-
	Te	93.76	100	-

Conclusion and Further Work

Conclusion

- We performed the coupled calculation between the CSPACE and SIRIUS codes against the Marviken test-202b to validate the improved CINEMA code.
- When considering the approximately 10% loss of the injected aerosol mass in the test, the prediction error range of approximately 30% is not high discrepancy.

Further Work

• Coupled calculation between the CSPACE and SIRIUS codes should be applied to other test data to increase an applicability of the CINEMA code.

