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1. Introduction

The estimation of kinetics parameters is essential for 

establishing the point kinetics model in reactor transient 

analysis. In the exact form of the point kinetics equation 

(PKE) [1], the kinetics parameters are functions of time 

defined as a ratio of integrals of the time-dependent 

Boltzmann transport equation over space, energy, and 

angle. To obtain the exact kinetics parameters, however, 

the time-dependent shape function and adequate adjoint 

function are required. Therefore, the practical PKE and 

kinetics parameters have been used with approximations 

of shape function and adjoint function as the 

fundamental-mode solutions of the steady-state 

transport equation and its corresponding adjoint 

equation. 

With the development of efficient and high fidelity 

methodologies [2-4] on the time-dependent Monte 

Carlo (MC) simulation, the time behavior of neutron 

can be obtained within a practical time range. As for the 

adjoint calculation, Shim [5] developed efficient MC 

algorithms to estimate adjoint function in the MC fixed 

source mode calculations, which are applicable to the 

MC transient simulation as well. The capability of 

generating the time-dependent shape function and 

corresponding adjoint function enables the estimation of 

kinetics parameters in the time-dependent MC 

simulation, especially in the transient cases. 

The purpose of this paper is to develop efficient 

algorithms for the estimation of the time-dependent 

kinetics parameters by MC transient simulation. A 

modified adjoint calculation algorithm is implemented 

to McCARD [6] transient analysis module [7] and 

verified in infinite homogeneous two-group problems 

with both steady-state and transient conditions. 

2. Methodology

2.1. Physical meaning of the adjoint in transient 

calculation 

Starting from the adjoint equation of the outcoming 

collision density, the Neumann series solution of the 

adjoint function with arbitrary detector cross section is 

derived by Shim [5] as 
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where 
†

det, j is the adjoint response from the j-th 

collision. In terms of the kernel, it can be written as 
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where the †
K  and det̂ are the adjoint transport kernel

and detector response term defined as equations below. 

† ( ( , ), , ) , ,d dE d T C tE t E E         K r Ω r r rΩ Ω Ω  (3)

det
det

( , , )
( , , )

( , , )t

E t
d T E t

E t


   


r

r r r Ω
r

(4) 

2

0

( , , )
( , , )

, , 1exp

t

t

E t
T E t

s
s E t ds

v




 
  

 

                      


r r

r
r r Ω

r r

r r r r
r Ω

r r r r

(5) 

( , ), ,
( , ), ,

( , , )

( , , ) ( , , ) ( , , )

( , , ) 4

s

t

f

t

tE E
C tE E

E t

E t E t E t

E t

 



   
   

 

      
 

 

rΩ Ω
rΩ Ω

r

r r r

r

(6) 

2

0

( , , )
( , , )

, , 1exp

t

t

E t
T E t

s E t ds 



 

 

                     


r r

r
r r Ω

r r

r r r r
r Ω

r r r r

(7) 

In the above equations, T and C represent the 

conventional free flight kernel and collision kernel with 

time-variable terms added. Since the expected 

importance or adjoint response of a neutron depends on 

the fixed phase space ( , , , )E tr Ω  when the neutron is 

introduced, the free flight kernel in the adjoint transport 

kernel is redefined as equation (7) with fixed time t. The 

time-dependent cross sections are defined as 
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where subscript r and l denote reaction type and isotope 

index. From equation (1) and (2), the adjoint response, 
†

det ( , , , )E t r Ω , can be interpreted as the sum of 

expected detector signals induced by a neutron at phase 

space ( , , , )E tr Ω . 

2.2. MC algorithm for the estimation of kinetics 

parameters in transient simulation 

From the exact forms of PKE, the adjoint weighted 

kinetics parameters, ( )t and ( )t , are expressed as 
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where  is the time-dependent shape function and the 

bracket  means the inner product of the components 

over ( , , )Er Ω . The Neumann series solution of the 

collision density equation gives the fission operator 

term in the bracket as 
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where st denotes the time source density in transient 

simulation which consists of the survival neutron source 

from the previous time step and the delayed neutron 

source. By combining the Neumann series solutions of 

the collision density equation with that of the adjoint 

response, equation (1), the time-dependent kinetics 

parameters can be calculated. 

Without any approximations, this can be exactly done 

by producing additional particles at each fission event 

and simulating them to obtain the adjoint response tally. 

However, this so-called Contributon method [8] is quite 

burdensome which may take hundreds of times 

depending on the system, especially if applied to the 

transient cases. So we utilize a more efficient MC 

algorithm developed by Shim [5] with an assumption to 

apply it for transient simulation. We assume the effect 

of system changes for the adjoint response within each 

time step is considerably small that the adjoint response 

obtained by fixing the system to the starting time of 

each time step would be accurate enough. Although this 

method costs extra particles for the estimation of 

kinetics parameters, this can be done as the fixed source 

mode calculation without making additional particles 

during a transient simulation. Then the adjoint weighted 

terms in equation (12) and (13) at each time step are 

calculated as 
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In the equations, n  and n  are a neutron source and its 

branch index of multiplicative reactions such as (n,fis), 

(n,2n), and (n,3n) within a time step. So, ( , )n n  means 

the n th branch of the n th neutron source, and N is the 

total number of neutron sources. 
( , )n n

fD


, ( , )n n

fdD
 , and 

( , )n n

cD


are the collection of fission, delayed fission, and 

collision indices respectively. ( , )J n n  indicates the last 

collision index within a time step. In the transient 

simulation, tracking a neutron and its branches to the 

end is inefficient or impossible. Therefore, as in the k-

adjoint calculation, the adjoint convergence interval (L) 

is introduced to set a limit on the adjoint tracking. 

( , )LJ n n j  term in the equations indicates the last 

collision index within the forward interval L from the jth 

collision. 

Then the equations (15) to (17) mean adding up the 

adjoint responses when the corresponding events such 

as fission, delayed fission and collision happen. By 

defining 
( , )

,

n n j
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,
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as the number of fissions 

and delayed fissions occurred before the jth collision 

within L, one can estimate equation (15) and (16) 

through the forward MC transient simulation. In a 

similar way, with the use of the cumulated flight time 

before the jth collision within L, 
( , )

,

n n j

t Lm


, equation (17) 

is calculated in the forward simulation. 

3. Application Results

3.1. Infinite homogeneous two-group steady-state 

problem 

The suggested MC algorithm for kinetics parameter 

estimation is implemented to McCARD transient 

analysis module. For the verification, kinetics 

parameters are estimated in infinite homogeneous two-

group problems. The two-group cross sections are given 

in Table 1 varying the differential scattering cross 

section. In this study, 
21s  are set to make the infinite 

multiplication factor from 0.6 to 1.002 and 
fg is used 

for detector cross sections. McCARD calculation is 

done with 1,000,000 histories for 1 second in the 

subcritical cases, and with 10,000 histories for 0.01 

second in the supercritical case. The initial neutron 

source is set to the fast energy group for all problems. 

To investigate the convergence of kinetics parameters 

according to the adjoint convergence interval, 

simulations are conducted varying the value L. 

Figure 1 is the comparison results of the estimated 

with its reference value in kinf of 0.6 and 0.98 cases. 

The estimates converge to the reference value as L 

increases, and it requires a larger L to get converged 

value in 0.98 case where the neutron chain is relatively 

longer. Table 2 is the comparison results of kinetics 

parameters in various cases, and it shows a good 

agreement within 95% confidence intervals. 

Table 1. Two-group cross section data 
Cross-section First group (g=1) Second group (g=2) 

tg 0.5 1.3 

fg 0.001 0.090 

g 2.4 2.4 

sgg 0.48 1.09 

sg′g (g≠g′) Variable 0.0019 

pg 1.0 0.0 

dg 0.5 0.5 

1/vg [s/cm] 2.28626×10-10 1.29329×10-6 

ig 
i=1 0.003 0.003 

i=2 0.003 0.003 

i [1/s]
i=1 0.16504 

i=2 1.44726 

Table 2. Comparison results of kinetics parameters for infinite 

homogenous steady-state problems 

kinf 
Kinetics 

parameter 

Analytic 

solution 
McCARD (RSD[%]) 

Relative 

error [%] 

0.6 
 8.26688×10-6 8.26832×10-6 (0.15) 0.02 

eff 8.16340×10-3 8.20670×10-3 (1.25) 0.53 

0.7 
 7.34565×10-6 7.35283×10-6 (0.12) 0.10 

eff 7.43094×10-3 7.47752×10-3 (1.14) 0.63 

0.8 
 6.59940×10-6 6.60594×10-6 (0.11) 0.10 

eff 6.88160×10-3 6.90917×10-3 (1.06) 0.40 

0.9 
 5.98623×10-6 5.99692×10-6 (0.09) 0.18 

eff 6.45432×10-3 6.46293×10-3 (1.01) 0.13 

0.98 
 5.57037×10-6 5.57156×10-6 (0.08) 0.02 

eff 6.17530×10-3 6.22503×10-3 (0.89) 0.81 

1.0 
 5.47921×10-6 5.47952×10-6 (0.02) 0.01 

eff 6.11520×10-3 6.09597×10-3 (0.22) 0.31 

1.002 
 5.46531×10-6 5.46295×10-6 (0.04) 0.04 

eff 6.10607×10-3 6.08095×10-3 (0.44) 0.41 

Figure 1. Comparison results of the estimated regarding L 

(upper: 0.6 case, lower: 0.98 case) 

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18



3.2. Infinite homogeneous two-group transient problem 

For the transient problem, a simple transient scenario 

is postulated by mixing the two material used in the 

steady-state problems. The two materials with kinf of 1.0 

(A) and 0.6 (B) are selected and mixed linearly from 

pure A material to pure B material until 5ms. For the 

next 5ms, the mixture is changed vice versa. McCARD 

transient calculation is done with 1,000,000 histories 

and the initial neutron source is set to fast energy group 

given at t=0. The kinetics parameters are estimated at 

each time step varying the interval of time step (t) and 

L and compared with the reference solution. 

Figures 2 and 3 show the comparison results of the 

estimated  and . In the figures on left, t is fixed to 

0.1ms, and L is fixed to 1ms in the right ones. In both 

cases, the estimated values show a significant difference 

when it does not reflect sufficiently large L, which is 

more than 20 times , on the adjoint calculation. But as 

to the time interval, it shows good agreement with the 

reference regardless of the size of t. 

Figure 2. Comparison results of  regarding L and t in the transient problem 

Figure 3. Comparison results of  regarding L and t in the transient problem 

4. Conclusion

The MC algorithm for estimating the time-dependent 

adjoint weighted kinetics parameters by MC transient 

calculation is developed base on the Neumann series 

solution of the exact shape function and adjoint 

response. The proposed algorithm is implemented in 

McCARD transient analysis module. The kinetics 

parameters are estimated for infinite homogeneous two-

group problems including the steady-state and transient 

cases. McCARD calculation results match well with the 

analytic solution. 
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