

Boron-Free Small Modular Reactor Design by McCARD Burnup Calculation with T/H Feedback

December 17, 2020

Dokyun Kim

realslowdk@snu.ac.kr

Contents

1. Introduction

2. Core Design of Boron-free SMR

2.1. Core Design Parameters2.2. Loading Pattern of SMR

- **3.** McCARD Burnup Calculation with T/H feedback
- 4. Numerical Results
 - 4.1. The effective multiplication factor
 - 4.2. Power distribution
 - 4.3. Temperature profile
 - 4.4. Temperature Coefficient
- 5. Conclusions & Future work

1. Introduction

- There are many studies of small modular reactor (SMR) for several advantages of power supply to remote locations, seawater desalination, etc.
- Many of SMRs are designed for a soluble boron-free operation which can reduce the size of the nuclear power plant and the corrosion issues caused by boric acid.
- In this study, SMR is designed for 4 to 5 years of cycle length at 200MW thermal power considering design parameters.
- Monte Carlo (MC) burnup calculation with or without thermal-hydraulic(T/H) feedback of SMR is performed by Monte Carlo code for advanced reactor design and analysis (McCARD).
- Based on the calculation result, analysis of the effective multiplication factor $(k_{eff.})$, radial and axial power distribution, and temperature distribution is conducted.

2.1. Core Design Parameters

• The design parameters of boron-free SMR

Parameters	Value					
Reactor type	PWR					
Thermal power	200 MW					
System pressure	15 MPa					
Linear power density	7.28 kW/m					
Coolant & Moderator	Light water					
Coolant Inlet Temp.	563.15 K					
Coolant Outlet Temp.	598.15 K					
Core Mass Flow	997.5 kg/s					
Boron concentration	0 ppm					
Number of FAs	52					
Active core height	200 cm					
FA type	Westinghouse 17×17					
FA pitch	21.50 cm					
Fuel rod pitch	1.26 cm					
Fuel material	UO ₂					
Fuel enrichment	4.95 w/o					
BA material	Solid Pyrex					
Target cycle length	4 ~ 5 year					
Max. excess reactivity	< 5000 pcm					

[Fuel assembly configuration]

2.1. Core Design Parameters

- Core design consideration factor
 - Axial Offset(AO) : \pm 0.4 [1] * The factor for the axial power distribution

* AO = $(P_B - P_T)/(P_B + P_T)$

* P_B = POWER OF THE BOTTOM HALF OF CORE

* P_T = POWER OF THE TOP HALF OF CORE

• Power Peaking factor (Fq) : 5.68 [2]

* MDNBR = $(q''_{crit})/(q''_{max} \times f)$ * Fq = $q''_{max}/q''_{avg.}$ = $(q''_{crit})/(f \times MDNBR)/(q''_{avg.})$ = 2579.0 kW/m² / (1.05 × 1.15 × MDNBR) / (q''_{avg.}) = 2135.8 kW/m² / (MDNBR × $q''_{avg.}$)

[1]	[2]	[3]	[4]	[5]	[6]				
MDNBR	Themal Power	Maximum Heat Flux	Heat transfer area $(17 \times 17, 9.5 \text{mm rod})$	Average Heat Flux	Power peaking factor (Fq)				
	(K () ()	$q''_{max} = 2135.8 / [1]$	$\pi \times D \times H \times 240 \times 52$	$q''_{avg} = [2] / [4]$	Fq = [3] / [5]				
1.4	200000	1525.56	774.93	.93 268.48					
	* D(Fuel pin diameter) : 9.5 mm / H(Active core height) : 2 m / 240 : Number of Fuel pins / 52 : Number of FAs								

Justin RM, Feasibility study on a soluble boron-free small modular reactor, Master thesis, Oregon State University, 2013.
 KEPCO E&F, Development of Boron Free Operational Reactor System Design and Material Selection Technology, 2018.

2.1. Core Design Parameters

- Reactivity Control
 - Maximum burnup : 35.62MWD/kgU
 - Effective Full Power Day (EFPD) : More than 5 years
 - k_{eff} at the beginning of cycle (BOC) : 1.36695 \pm 0.00038
 - Maximum excess reactivity : $26,844 \pm 20$ pcm
 - \rightarrow Need a lot of burnable absorber (BA) for reactivity control
- Fuel pin arrangement in FA
 - SMR is designed using FA loaded with Solid Pyrex
 - 24 BAs are loaded instead of fuel pins
 - The arrangement is decided according to the previous study
 - The neutron absorption capacity of BA is proportional to the weight percent (w/o) of B_2O_3 contained in Pyrex

 $[k_{eff.}$ changes according to burnup]

[[]Fuel assembly configuration]

2.2. Loading Pattern of SMR

- The core is composed of a combination of 5 types of FA with different concentrations of B_2O_3 in Pyrex.
- FAs using a high concentration of B_2O_3 are placed at the center of the core and FAs using a low concentration of B_2O_3 are placed on the periphery to make radial power distribution smooth.

FA Type	B ₂ O ₃ w/o in Pyrex	Number of fuel pins	Number of BA pins	Number of FA
1	5 240 24			8
2	10	240 24		12
3	25	240	24	16
4	35	240	24	12
5	40	240	24	4
]	Fotal	12480	1248	52

[The information of FA types by the concentration of BA]

2.2. Loading Pattern of SMR

- In boron-free SMR, the reactivity change is controlled by using the control rods.
- There are forty Control Element Assemblies (CEAs) in the core [3].
- The location of CEA is determined to control reactivity change caused by change in core state.

			SB	RB			
	SB	SB	RB	SB	RB	SB	
	RB		SB	RB	SB	SB	
RB	SB	RB	RB	SB		RB	SB
SB	RB		SB	RB	RB	SB	RB
	SB	SB	RB	SB		RB	
	SB	RB	SB	RB	SB	SB	
			RB	SB			

* RB: Regulating Bank (18), SB: Shutdown Bank (22)

[Location of the CEAs]

[3] Il Hwan Kim et al., Development of BANDI-60S for a Floating Nuclear Power Plant, KNS Meeting, Goyang, Korea, October 24-25, 2019

 T_{i+1}, h_{i+1}

 $\overline{T}_i, \overline{h}_i$

 T_i, h_i

3. McCARD Burnup Calculation with T/H feedback

- McCARD has a pin-by-pin T/H feedback capability which considers only simple problems including coolant, gap, cladding, and fuel pellet.
- A radial temperature profile and an axial temperature profile in a fuel pin cell can be calculated by heat transfer equation and energy conservation equation with the 1-D T/H model.
- Average Temperature Calculation equation : $\overline{T}_i = f(h_i), \quad \overline{h}_i = \frac{h_i + h_{i+1}}{2}, \quad \overline{T}_c = \frac{T_c + T_g}{2}, \quad \overline{T}_g = \frac{T_g + T_s}{2},$ $\overline{T}_f = 0.5T_f + 0.5T_s$
- The heat transfer coefficient and thermal conductivity [5] :

$$h_{g}\left[\frac{W}{m^{2}K}\right] = 1000, \qquad h_{w}\left[\frac{W}{m^{2}K}\right] = \sum_{n=0}^{3} a_{n}T^{n}$$
Fuel Gap Clad Coolant
[1D T/H model in McCARD]

$$k_{f(UO_{2})}\left[\frac{W}{mK}\right] = 1.05 + \frac{2150}{T - 73.15} \quad k_{c(Zr_{4})}\left[\frac{W}{mK}\right] = 7.51 + 2.09 \times 10^{-2}T - 1.45 \times 10^{-5}T^{2} + 7.67 \times 10^{-9}T^{3}$$

[5] Finnemann, H. and Galati, A.: "NEACRP 3-D LWR Core Transient Benchmark. Final Specifications", 1992.

4.1. The effective multiplication factor

Calculation option

구분	Nuclear Data	Histories / Active cycles / Inactive cycles	Coolant Temperature	Fuel Temperature
without T/H	ENDF/	100,000/300/150	580.65K (Average)	700K
with T/H	B-VII.1	100,000/300/150	563.15 (Inlet) / 598.15K (Outlet)	-

Results

Divisi	ion	Without T/H	With T/H	Diff	
Burnup [MWD/kgU]	$\begin{array}{c} \text{EFPD} \\ \text{[day]} \end{array} \qquad \qquad k_{eff.} \text{(SD)} \end{array}$		$k_{eff.}$ (SD)	[pcm]	
0	0 (BOC)	1.03939 (0.00015)	1.03762 (0.00013)	177	
16.82	1000 (MOC1)	1.02140 (0.00013)	1.02026 (0.00012)	114	
23.12	1375 (MOC2)	1.02301 (0.00012)	1.02080 (0.00012)	221	
29.43	1750 (EOC)	1.00248 (0.00012)	1.00257 (0.00012)	-9	

[The difference of $k_{e\!f\!f\!.}$ at BOC, MOC, and EOC]

\checkmark Cycle length

- without T/H : 4.8864 \pm 0.0003
- with T/H $: 4.8978 \pm 0.0002$
- ✓ Maximum excess reactivity : less than 5,000pcm

Radial Power Peaking Factor (Fr)

- The Fr value increases and decreases repeatedly and increases rapidly from around 1300 EFPD.
- At 1300 EFPD, where the burnup of BAs decreases the rapid burn of uranium causes the increase in Fr values.

Radial Power Distribution

Division		EFPD [day]								
	DIVISION	0(BOC)	1750 (EOC)							
Г	without T/H(SD)	1.222(0.001)	1.229(0.001)	1.249(0.001)	1.334(0.001)					
Fr	with T/H(SD)	1.201(0.001)	1.211(0.001)	1.218(0.001)	1.297(0.001)					
RMS difference		1.84%	0.94%	2.24%	1.84%					
Maximu	m Relative difference	2.81%	1.74%	3.35%	2.86%					

				THE TAKE						1145 T (1400)	0.4)	Г							_						
wit	nour 1/H(0 day	0		with 1/H(0	day)	with	ut 1/H(1000 d	iy)	v v	vith 1/H(1000	0 day)		withou	t 1/H(13/5 da	iy)	,	vith 1/H(137	s day)	L	Without	T/H(1750 d	ay)	`	Vith T/H(175	0 day)
1.205 1	.222 1.192	0.876	1.183	1.188 1.1	0.885	1.018	.122 1.229	0.948	1.023	1.114 1.2	0.944		1.221 1.2	46 1.179	0.824	1.185	1.216 1.1	.76 0.845		1.334 1.28	1.138	0.784	1.297	1.260 1	0.806
1.210 1	.147 1.015	0.693	1.201	1.134 1.0	019 0.712	1.118	.096 1.055	0.732	1.113	1.095 1.0	0.55 0.736		1.249 1.1	87 1.042	0.653	1.218	1.168 1.0	0.674		1.282 1.21	3 1.028	0.630	1.258	1.197 1	035 0.649
1.182 1	.010 0.686		1.180	1.021 0.7	702	1.219	.049 0.750		1.208	1.058 0.7	763		1.175 1.0	37 0.724		1.171	1.047 0.1	43		1.140 1.03	0.720		1.141	1.035 0	731
0.871 0	.692		0.892	0.712		0.939	.726		0.941	0.739			0.817 0.6	46		0.838	0.668	_		0.786 0.63	2	·	0.802	0.646	_
Max SD 0.	0010 F	r 1.222	Max SD	0.0010	Fr 1.201	Max SD 0	0010 F	r 1.229	Max SD	0.0010	Fr 1.211	N	Max SD 0.00	10 Fi	1.249	Max SD	0.0010	Fr 1.218	M	fax SD 0.00	10 F	r 1.334	Max SD	0.0010	Fr 1.297
1.205	1.222	1.192	0.876			1.018	1.122	1.229	0.948				1.221	1.246	1.179	0.824				1.334	1.282	1.138	0.784		
1.183	1.188	1.173	0.885			1.023	1.114	1.211	0.944				1.185	1.216	1.176	0.845				1.297	1.260	1.143	0.806		
1.93%	2.81%	1.60%	-1.06%			-0.47%	0.76%	1.56%	0.45%				3.05%	2.49%	0.25%	-2.46%				2.86%	1.72%	-0.44%	-2.65%		
1.210	1.147	1.015	0.693	1		1.118	1.096	1.055	0.732	1		Г	1.249	1.187	1.042	0.653				1.282	1.213	1.028	0.630		
1.201	1.134	1.019	0.712			1.113	1.095	1.055	0.736				1.218	1.168	1.051	0.674				1.258	1.197	1.035	0.649		
0.76%	1.16%	-0.42%	-2.60%			0.38%	0.04%	-0.05%	-0.64%				2.51%	1.57%	-0.88%	-3.06%				1.94%	1.32%	-0.68%	-2.85%		
1.182	1.010	0.686			Fr	1.219	1.049	0.750			Fr		1.175	1.037	0.724			Fr		1.140	1.031	0.720			Fr
1.180	1.021	0.702		Without TH	1.222	1.208	1.058	0.763		Without TH	1.229		1.171	1.047	0.743		Without TH	1.249		1 141	1.035	0.731		Without TH	1 3 3 4
0.100/	1.000/	2.200/		11 Col. (2017)	1.201	0.070/	0.070/	1.740/		and do not a	1.211		0.200/	0.060/	2.5(0)		and the second	1.210		1.141	1.055	0.751		Williout III	1.554
0.19%	-1.00%	-2.30%		With TH	1.201	0.87%	-0.8/%	-1./4%		With TH	1.211		0.39%	-0.96%	-2.56%		With TH	1.218		-0.09%	-0.43%	-1.50%		With TH	1.297
0.871	0.692		Without TH	Max. SE	0 = 0.001	0.939	0.726		Without TH	Max. SI	D = 0.001		0.817	0.646		Without TH	Max. SI	0 = 0.001		0.786	0.632		Without TH	Max. SI	0 = 0.001
0.892	0.712		With TH	RMS diff.	MAX diff.	0.941	0.739		With TH	RMS diff.	MAX diff.		0.838	0.668		With TH	RMS diff.	MAX diff.		0.802	0.646		With TH	RMS diff.	MAX diff.
-2.43%	-2.73%		Rel. Diff.	1.84%	2.81%	-0.17%	-1.72%		Rel. Diff.	0.94%	1.74%		-2.47%	-3.35%		Rel. Diff.	2.24%	3.35%		-2.07%	-2.17%		Rel. Diff.	1.84%	2.86%
		- [0]	lovi					[100	ldavl						[1374	Sdovl			_			[175()davl		
		Įυι	iayj					11000	Juayj						[137.	Juay						[1/30	Juayj		

• There is a shit in power peak from the inner core region to the outer core region from

BOC to MOC, and after MOC, a power peak moves vice versa.

- In the case of using T/H feedback, it can be seen that the axial power distribution is biased toward the lower part of the core.
- The axial power peak moves to the upper part of the core toward at EOC.

Axial Power Distribution

- The graphs maintain the cosine shape of axial power distribution for a longer time than the conventional PWR.
- It shows the axial power distribution in the center of the core are flattened at 1375 days, when the burnup of boron in BAs decreases.

Power Peaking Factor (Fq)

- Maximum of the Fq value : without TH 2.3259 ± 0.1153 / with TH 2.2886 ± 0.1178
- Maximum linear power density : 16.67 ± 0.73 kW/m (Average linear power density : 7.28 kW/m)
 * Limit of linear power density [kW/m] : 41.38 (MDNBR = 1.4, Fq = 5.68)

SNU Monte Carlo Lab.

4.2. Power distribution

4.3. Temperature profile

• The axial coolant temperature profile and fuel temperature profile

• The average fuel temperature and the axial fuel temperature profile

EFPD [day]	0 (B	OC)	1000 (1	MOC1)	1375 (1	MOC2)	1750 (EOC)		
	Temp.[K]	SD	Temp.[K]	SD	Temp.[K]	SD	Temp.[K]	SD	
Avg. Coolant Temp.	582.50	0.25	582.13	0.25	581.75	0.24	580.02	0.25	
Avg. Fuel Temp.	696.61	1.21	696.17	1.25	695.62	1.22	693.25	1.30	

• The average fuel temperature of SMR is about 150 K lower than that of conventional PWR.

4.3. Temperature profile

• The radial coolant temperature profile and fuel temperature profile

		Radial Power distribution	Avg. Coolant Temp.	Fuel Avg. Temp.
		1.183 1.188 1.173 0.885	585.8 585.9 585.6 580.4	721.9 724.1 721.8 679.7
	$\begin{pmatrix} 0 \\ (POC) \end{pmatrix}$	1.201 1.134 1.019 0.712	586.1 5 85.0 5 82.8 5 77.2	724.6 716.0 699.1 655.4
	(BOC)	1.180 1.021 0.702	585.8 583.0 577.2	722.6 699.6 654.7
		0.892 0.712 Max SD = 0.001	580.5 577.3 Max SD = 0.12	680.5 656.0 Max SD = 0.45
		Radial Power distribution	Avg. Coolant Temp.	Fuel Avg. Temp.
	1000	1.023 1.114 1.211 0.944	582.6 584.3 586.0 581.2	698.5 711.9 726.8 687.0
	1000 (MOC1)	1.113 1.095 1.055 0.736	584.3 584.0 583.3 577.5	713.1 709.6 704.4 658.5
	(INIOCI)	1.208 1.058 0.763	585.9 583.3 578.0	727.1 704.7 662.8
EFPD		0.941 0.739 Max SD = 0.001	581.1 577.5 Max SD = 0.12	687.3 658.7 Max SD = 0.45
[day]				
[day]		Radial Power distribution	Avg. Coolant Temp.	Fuel Avg. Temp.
[day]	1275	Radial Power distribution1.1851.2161.1760.845	Avg. Coolant Temp. 585.2 585.7 584.7 578.8	Fuel Avg. Temp. 724.5 727.6 719.3 671.1
[day]	1375 (MOC2)	Radia Power distribution 1.185 1.216 1.176 0.845 1.218 1.168 1.051 0.674	S85.2 S85.7 S84.7 S78.8 S85.7 S84.8 S82.6 S75.9	Fuel Avis Temp. 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8
[day]	1375 (MOC2)	Radia Power Ustribute 1.185 1.216 1.176 0.845 1.218 1.168 1.051 0.6741 1.171 1.047 0.743	SVENE SUPPORT 585.2 585.7 584.7 578.8 585.7 584.8 582.6 575.9 584.6 582.5 577.2 577.2	Fuel Avis Temps 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1
[day]	1375 (MOC2)	Radia Power distribution1.1851.2161.1760.8451.2181.1681.0510.6741.1711.0470.7430.8380.668Max SD=0.001	SVSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUSUS	Fuel Avis Temps 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1 9 672.6 648.7 Max SD=0.45
[day]	1375 (MOC2)	Radia Power distribution 1.185 1.216 1.176 0.845 1.218 1.168 1.051 0.674 1.171 1.047 0.743 0.838 0.668 Max SD = 0.001	S85.2 585.7 584.7 578.8 585.7 584.8 582.6 575.9 584.6 582.5 577.2 578.6 578.6 578.0 Max SD = 0.12	Fuel A⊍J TempJ 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1 5672.6 672.6 648.7 Max SD=0.45
[day]	1375 (MOC2)	Radia Power Ustribute1.1851.2161.1760.8451.2181.0181.0510.6741.1711.0470.7430.8380.8380.668Max SD = 0.001Radia DestributeI.2071.2601.2971.2601.1430.806	S85.2 585.7 584.7 578.8 585.7 584.8 582.6 575.9 584.6 582.5 577.2 578.6 578.0 Max SD = 0.12 585.1 584.3 582.1 576.8	Fuel A⊍J Temp. 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1 572.6 672.6 648.7 Max SJ = 0.45 Fuel A⊍J Temp. 736.5 730.1 712.5 665.0
[day]	1375 (MOC2) 1750 (EQC)	BRAULI POWEULISTIBLI 1.185 1.216 1.176 0.845 1.218 1.016 1.051 0.674 1.171 1.047 0.743 0.838 0.838 0.668 Max SD= 0.001 Image: State	IBAL 585.2 585.7 584.7 578.8 585.7 584.8 582.6 575.9 584.6 582.5 577.2 578.6 578.6 578.0 Max SD=0.12 IBAL S85.1 584.3 582.1 576.8 584.2 583.3 580.6 574.4	Fuel A⊍: Temp: 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1 672.6 648.7 Max S) 0.453 Fuel AU: Temp: 736.5 730.1 712.5 665.0 730.7 720.5 697.5 644.3
[day]	1375 (MOC2) 1750 (EOC)	Radi Power Ustribur1.1851.2161.1760.8451.2181.0681.0510.6741.1711.0470.7430.8380.6680.8380.668Max SD = 0.001I 1.2091.2601.1211.2601.2581.1971.0350.6491.1411.0350.731	Image: Second S	Fuel A⊍: Temp: 724.5 727.6 719.3 671.1 728.8 720.7 701.1 647.8 720.9 701.6 658.1 672.6 648.7 Max SÙ: O.45 Fuel AU: Temp: 736.5 730.1 712.5 665.0 712.4 697.4 656.0

4.4. Temperature Coefficient

- The moderator temperature coefficient (MTC)
 - * Average temperature of moderator used in calculation : 580.65K, 573.15K (Δ T : 7.5K)

- MTC of boron-free SMR has a larger negative value than that of a commercial PWR.
- It shows the largest negative value at -113.60 \pm 2.88 pcm/K at BOC

4.4. Temperature Coefficient

- The fuel temperature coefficient (FTC)
 - * Average temperature of moderator used in calculation : 900K, 700K (Δ T : 200K)

- FTC of boron-free SMR has a value similar to that of a commercial PWR.
- It shows the largest negative value at -2.32 \pm 0.10 pcm/K at BOC

5. Conclusion & Future work

- This study presents the design of boron-free SMR by McCARD burnup calculation with T/H feedback.
- The core is designed using 5 types of FAs with different concentrations of Pyrex BA satisfying the design parameters with 200MWt.

구분	Without TH	With TH	Limit Value
Cycle length [year]	4.8864 ± 0.0003	$4.8978 \!\pm\! 0.0002$	4~5 years
Maximum excess reactivity [pcm]	3790±14	3626±12	< 5,000pcm
Maximum Fr	1.3431 ± 0.0020	1.3046 ± 0.0019	-
Maximum Fq	2.3259±0.1153	2.3129±0.1185	< 5.68
Maximum linear power density [kW/m]	16.9429 ± 0.8402	16.8482 ± 0.8633	<41.38kW/m
Maximum Axial Offset (AO)	-	0.2149 ±0.0011	-0.4 <ao<+0.4< td=""></ao<+0.4<>
Average coolant temperature [K]	580.65	$580.02 \pm 0.25 \sim 582.50 \pm 0.25$	-
Average Fuel temperature [K]	700	693.25±1.30 ~ 696.61±1.21	-
MTC [pcm/K]	-113.60±2.88	-	
FTC [pcm/K]	-2.32 ± 0.10	-	

- The average fuel temperature is about 150 K lower than that of conventional PWR.
- The cosine shape of the axial power distribution is maintained longer than that of PWR.

5. Conclusion & Future work

- The burnup calculation of the SMR will be performed under critical-state conditions using a control rod.
- The core characteristics will be calculated by the results of the burn-up calculation under critical-state conditions.

Seoul National University Monte Carlo Laboratory

