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1. Introduction

Various methods have been studied to improve the 
computational efficiency of the loading pattern (LP) 
optimization using the SA (simulated annealing) method. 
In the past, Artificial Neural Network (ANN) models 
such as Optimization layer by layer (OLL) have been 
developed to reduce the computation time of neutronic 
design parameters [1]. Furthermore, as computer 
performance improved, deep learning networks using 
Convolutional Neural Network (CNN) were developed 
to replace existing neutronics codes [2-3]. In the previous 
study, CNN was selected as a learning method, the 
prediction models of cycle length and the peaking factor 
were developed using CNN [4]. And learning was 
performed using data of westinghouse 2-loop plant type. 

In this study, to optimize the LP of the Korean 
Standard Nuclear Power Plant (OPR-1000), the 
prediction models of OPR-1000 were developed based 
on the prediction models of the westinghouse 2-loop 
plant using CNN.  

2. Review of Previous Works

In the previous study, the CNN model was developed 
and the performance comparison was conducted with the 
Deep Neural Network (DNN) model. And improvement 
of the CNN models was performed to predict the cycle 
length and the peaking factor of the westinghouse 2-loop 
plant type. To predict the cycle length and the peaking 
factor, assembly fuel enrichment (wt%), fraction of 
Burnable Poison (BP) (wt%), number of BP rods, and 
assembly burnup (MWD/MTU) were used as input 
parameters. Fig.1 shows the internal structure of the 
model used to predict the westinghouse 2-loop plant. 
Model 1 (M1) is the configuration using the max-pooling 
layer in the previous study, and Model 2 (M2) is the 
configuration modified through the sensitivity test 
without using the max-pooling layer. Table Ⅰ and Table 
Ⅱ summarize the cycle length and the peaking factor 
prediction errors of the westinghouse 2-loop plant. The 
performance of model 1 and model 2 using normalization 
and L2 regularization (M1NR and M2NR) are compared 
with the results of model 1. 

Fig. 1. Internal structures of the prediction algorithms 

Table I: Prediction error of the cycle length 
(Westinghouse 2-loop plant) 

Model 
Prediction error 

RMS (%) Max (%) 
M1 1.07 2.12 

M1NR 0.26 1.44 
M2NR 0.18 1.96 

Table II: Prediction error of the peaking factor 
(Westinghouse 2-loop plant) 

Model 
Prediction error 

RMS (%) Max (%) 
M1 1.74 13.81 

M1NR 1.42 8.41 
M2NR 1.14 6.92 

3. Methods and Results

3.1 Data Generation 

Based on the LP of OPR-1000, core calculation using 
RAST-K code was performed to generate a training 
dataset. The input parameters are the same as the training 



dataset for the westinghouse 2- loop plant. On the other 
hand, unlike the training dataset of westinghouse 2-loop 
plant, the loading patterns were assumed to be octant 
symmetry, and data for LP with the peaking factor less 
than 1.60 were added. Fig. 2 shows an example of input 
data, and the input data is 8x8x4 multi-dimensional 
matrix with the quarter core size. About 110,000 LPs of 
OPR-1000 were generated in the dataset, and the data 
were divided into 90,000 training data, 10,000 validation 
data, and 10,000 test data.  Fig. 3 and Fig. 4 are histogram 
graphs showing the distribution of the cycle length and 
the peaking factor in the total data, training data, 
validation data, and test data. 

Fig. 2. Example of input data (OPR1000) 

Fig. 3. Distribution of the cycle length in datasets 

Fig. 4. Distribution of the peaking factor in datasets 

3.2 Training results of the cycle length 

The architecture of prediction model is similar to the 
M2NR model of westinghouse 2-loop plant (Fig. 1). And 
the models were selected by performing sensitivity tests 
for the hyperparameters (e.g. the number of 
convolutional layers and filters and so on). The 
prediction model of the cycle length consists of 9 
convolutional layers, and 128 filters are used for each 
layer. In the cycle length, Fig. 5 shows the convergence 
process of the prediction error using 10,000 validation 
data. Fig. 6 shows the training results of the cycle length 
using 10,000 test data. As the results of training, the 
prediction error of the cycle length is 0.12% for RMS 
error, 3.73% for maximum error, and 99.8% of the test 
data are predicted within 0.5% error range.  

Fig. 5. Convergence process of the prediction model 

(cycle length) 

Fig. 6. Cycle length : CNN vs. RAST-K 

3.3 Training results of the peaking factor 

The prediction model of the peaking factor consists of 
13 convolutional layers, and 256 filters are used for each 
layer. In the peaking factor, Fig. 7 shows the 
convergence process of the prediction error using 
validation data. Fig. 8 shows the training results of the 
peaking factor using test data. As the results of training, 
the prediction error of the peaking factor is 2.65% for 
RMS error, 136% for maximum error, and 99.4% of the 
test data are predicted within 5% error range.  
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Fig. 7. Convergence process of the prediction model 
(peaking factor) 

Fig. 8. Peaking factor : CNN vs. RAST-K 

Table Ⅲ and Table Ⅳ summarize the training results 
of the cycle length and the peaking factor. In Table Ⅲ, 
the column of prediction accuracy represents the 
proportion of test data predicted within the error range. 
The training results of the OPR-1000 prediction model 
showed similar performance to the prediction model of 
westinghouse plant in both the cycle length and the 
peaking factor. The prediction model of the cycle length 
showed better performance than the Westinghouse 
prediction model in both the RMS error and the 
maximum error. The prediction model of the peaking 
factor showed the large error for some specific test LP 
but has the similar error range as the Westinghouse 
prediction model. In addition, because LP data with the 
peaking factor less than 1.60 were added, the prediction 
model of the peaking factor showed better performance 
in LPs with the peaking factor value similar to 1.60.  

Table Ⅲ: Training results (cycle length) 

Test 
data 

Prediction error (%) Prediction accuracy (%) 

RMS* Max** Abs*** 
 < 0.2% 

Abs*** 
 < 0.5% 

10000 0.12 3.73 96.5 99.8 
RMS* : RMS value of relative error (%) 
Max** : Maximum value of relative error (%) 
Abs*** : Absolute value of relative error (%) 

Table Ⅳ: Training results (peaking factor) 

Test 
data 

Prediction error (%) Prediction accuracy (%) 

RMS* Max** Abs*** 
 < 3.0% 

Abs*** 
 < 5.0% 

10000 2.65 136 97.6 99.4 
RMS* : RMS value of relative error (%) 
Max** : Maximum value of relative error (%) 
Abs*** : Absolute value of relative error (%) 

4. Conclusions

In this study, to optimize the loading pattern of OPR-
1000, the prediction models were developed based on the 
prediction models of westinghouse 2-loop plant. By 
using the RAST-K code, training data of the cycle length 
and the peaking factor of OPR-1000 were generated. As 
a result of training the cycle length for 10,000 test data, 
the RMS error was 0.12%, showing good performance. 
The prediction model of the peaking factor showed 2.65% 
RMS error. The prediction model of the OPR-1000 
showed high performance in both the cycle length and 
the peaking factor. In particular, it showed better 
performance around 1.60, a meaningful data range of the 
peaking factor. 

In addition, comparing the computation time, the 
computation time of the existing neutronics codes took 
several minutes, while the average computation time of 
the prediction model took less than 0.2 seconds for one 
LP. Moreover, one of the methods to increase the 
efficiency of LP optimization is to improve the 
performance of the prediction models [5]. Therefore, 
with the improvement of the prediction model, 
verification will be performed in terms of the data set. In 
particular, it is necessary to supplement good loading 
pattern data within the design limit.  
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