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1. Introduction

Loading pattern (LP) optimization is to find the most 
economical LP among all LPs that satisfy the safety 
limits. Simulated Annealing (SA) algorithm is a widely 
used optimization method in the LP optimization 
problems [1]. However, SA using neutronics code has a 
disadvantage of high computational cost. Therefore, as a 
simple evaluation code, CNN prediction models were 
developed to replace the existing neutronics codes [2]. 

In this study, the prediction models of the Korean 
Standard Nuclear Power Plant (OPR-1000) were 
developed [3] and used as the simple evaluation code for 
SA. Also, by applying the prediction models to SA, 
Screening Technique (ST) was applied to reduce the 
uncertainty of the final LP due to the error of the 
prediction model [4]. 

2. Methods and Results

2.1 Simulated annealing (SA) 

SA is widely used as a method of automatic LP 
optimization for LP optimization problems. SA is a 
proposed optimization method based on the metal 
annealing process. SA starts with a high temperature and 
performs the optimization using the Metropolis 
algorithm as the inner loop while slowly lowering the 
temperature variable [5]. While slowly lowering the 
temperature, the thermal equilibrium is reached at every 
temperature using the Metropolis algorithm. In the 
Metropolis algorithm, transitions are accepted with a 
certain probability defined by Equation 1 
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𝑒𝑒𝑒𝑒𝑝𝑝 �− ∆𝑓𝑓
𝑘𝑘𝑘𝑘
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where ∆𝑓𝑓 = 𝑓𝑓(Xi+1) − 𝑓𝑓(𝑋𝑋𝑖𝑖), 
𝑓𝑓(𝑋𝑋) : Internal energy of state X, 
𝑘𝑘 : Boltzmann constant, 
T : Temperature 

For the new LP, if the transition probability 𝑝𝑝  is 
greater than the random number 𝜉𝜉 (0 <  ξ < 1) , the 
transition is accepted, and if 𝑝𝑝  is smaller than 𝜉𝜉 , the 
transition is rejected. Even worse LP can be accepted in 
this process. The iterations of this process can achieve 
the thermal equilibrium of the system at every 

temperature and escape from the local optimal solution. 
The transition conditions are summarized as: 

�
𝐽𝐽(𝑋𝑋) < 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋)   (𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑝𝑝𝑎𝑎)
𝐽𝐽(𝑋𝑋) > 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋)  (𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎)           (2) 

where 𝐽𝐽(𝑋𝑋) : Objective function, 
𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) = 𝐽𝐽𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋) − 𝐶𝐶𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝜉𝜉, 
𝐶𝐶𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐 : Current temperature, 

2.2 Screening technique (ST) 

SA is a powerful optimization method for LP 
optimization. but despite the improved computer 
performance and optimization method applied, it still has 
the disadvantage of high computational cost to search the 
optimal LP. It is due to the high computation time of the 
neutronics code and a large number of LP evaluations 
when SA is performed. If the neutronic design 
parameters such as the peaking factor and the cycle 
length can be predicted without 3D depletion 
calculations, the optimal LP can be found faster than the 
traditional SA. 

Therefore, the Screening Technique (ST) was applied 
as a method to reduce the computational cost. For a given 
LP, if 2D neutronics evaluation can determine the 
transition, 3D neutronics evaluation can be replaced with 
2D neutronics evaluation to save the computation time. 

In this study, instead of 2D evaluation using the 
neutronics code, CNN evaluation using the prediction 
model was applied as the simple evaluation. When the 
objective function through CNN evaluation is 𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶, and 
the objective function through 3D evaluation is 𝐽𝐽3𝐷𝐷, the 
difference between 𝐽𝐽3𝐷𝐷  and 𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶  is defined as ∆𝐽𝐽 =
𝐽𝐽3𝐷𝐷 −  𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶. The distribution function of ∆𝐽𝐽 is obtained 
by evaluating the sample data for X, which is a random 
LP. Also, the mean value and the standard deviation of 
∆𝐽𝐽 are defined as ∆𝐽𝐽��� and 𝜎𝜎, respectively. The parameters 
𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷  and 𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷  for screening are defined as: 

𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷 (X) = 𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) +  ∆𝐽𝐽���  +  𝜅𝜅𝜎𝜎            (3) 

𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷 (X) = 𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) +  ∆𝐽𝐽��� −  𝜅𝜅𝜎𝜎            (4) 

If 𝜅𝜅 = 2  and ∆𝐽𝐽  is a normal distribution, the 
relationship between 𝐽𝐽3𝐷𝐷(𝑋𝑋), 𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷 (X) and 𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷 (X) is as 
follows. 



pr{𝐽𝐽3𝐷𝐷(𝑋𝑋) < 𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷 (X)} = pr{𝐽𝐽3𝐷𝐷(𝑋𝑋) > 𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷 (X)} 
= 2.28%  (5) 

ST uses 𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷 (X) as acceptance criterion to reduce the 
3D evaluation of the new LP. And 𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷  is used as a 
rejection criterion. If 𝐽𝐽𝑚𝑚𝑖𝑖𝑚𝑚3𝐷𝐷  is greater than 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) , the 
new LP can be rejected with only the CNN evaluation 
without the 3D evaluation. Also, if 𝐽𝐽𝑚𝑚𝑎𝑎𝑚𝑚3𝐷𝐷 (X) is smaller 
than 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋), the new LP can be accepted with only the 
CNN evaluation without the 3D evaluation. In these case, 
the small probability of Equation 5 is ignored. 
Furthermore, if the 𝑋𝑋 satisfies all design limits for the 
first time (e.g. 𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶 = 0), the 3D evaluation is performed 
for an accurate result. 

2.3 Application and results 

In this paper, ST was applied as a method to reduce 
the computational cost of SA. Also, as the simple 
evaluation code, the prediction model using CNN was 
applied to replace the 2D evaluation. The LP 
optimization was performed for the cycle 4 of Shin-Kori 
unit 1. The specifications of the fuel assemblies used in 
the real LP are provided in Table Ⅰ. Fig. 1 shows the 
benchmark LP for the cycle 4 of Shin-Kori unit 1. 

Table Ⅰ: Specifications of the fuel assembly 

FA type Enrichment 
(wt% U-235) No. of Gd rods 

Burnable 
Absorber 

(wt% Gd2𝑂𝑂3) 
D0 4.5 0 0 

D1 4.5 6 8 

D2 4.5 6 12 

D4 4.5 8 16 

D6 4.5 8 12 

E0 4.64 0 0 

E1 4.64 6 8 

E2 4.64 6 12 

E4 4.64 8 16 

E6 4.64 8 12 

E7 4.64 8 20 

F0 4.65 0 0 

F1 4.65 6 8 

F2 4.65 6 12 

F3 4.65 6 16 

F4 4.65 8 16 

F5 4.65 8 8 

F6 4.65 8 12 

F7 4.65 8 20 

F8 4.65 8 24 

FC 2.2 0 0 

Fig. 1. Benchmark LP for the cycle 4 of Shin-Kori unit 1

Multi-objective LP optimization was performed to 
search the LP that satisfies the peaking factor and the 
cycle length limit. The performance of the prediction 
model applied to SA as the simple evaluation code is 
shown in Table Ⅱ and Table Ⅲ. The multi-objective 
function 𝐽𝐽(𝑋𝑋)  and the objective function of each 
neutronic design parameter are defined as follows:  

𝐽𝐽(X) =  ωPF𝐽𝐽𝑃𝑃𝑃𝑃(𝑋𝑋) +  ωCYC𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋)            (6) 

𝐽𝐽𝑃𝑃𝑃𝑃(𝑋𝑋) 

= �1 + 1
𝑃𝑃𝑃𝑃����

(𝑃𝑃𝑃𝑃(𝑋𝑋) − 𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚)2   (𝑃𝑃𝑃𝑃(𝑋𝑋) > 𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚)
0           (𝑃𝑃𝑃𝑃(𝑋𝑋) < 𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚)

   (7) 

𝐽𝐽𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) 

= �
1 + 1

𝐶𝐶𝐶𝐶𝐶𝐶������ (𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) − 𝐶𝐶𝐶𝐶𝐶𝐶)2  (𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) < 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑚𝑚)
0           (𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) > 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑚𝑚)

(8) 

Table Ⅱ: Training results (cycle length) 

Test 
data 

Prediction error (%) Prediction accuracy (%) 

RMS* Max** Abs*** 
 < 0.2% 

Abs*** 
 < 0.5% 

10000 0.12 3.73 96.5 99.8 
RMS* : RMS value of relative error (%) 
Max** : Maximum value of relative error (%) 
Abs*** : Absolute value of relative error (%) 

Table Ⅲ: Training results (peaking factor) 

Test 
data 

Prediction error (%) Prediction accuracy (%) 

RMS* Max** Abs*** 
 < 3.0% 

Abs*** 
 < 5.0% 

10000 2.65 136 97.6 99.4 
RMS* : RMS value of relative error (%) 
Max** : Maximum value of relative error (%) 
Abs*** : Absolute value of relative error (%) 
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The LP optimizations were performed at a similar 
level to the benchmark LP which is the real LP of Shin-
Kori unit 1 by setting the design limits. For the LP 
optimization using SA, the design limit for the peaking 
factor (𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚) is 1.60, and the design limit for the cycle 
length (𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑚𝑚) is 492 days. These design limits were set 
to the similar values of the real LP. Also, a new option 
was added to maximize the screening efficiency of ST. If 
PFCNN is greater than PF𝑙𝑙𝑖𝑖𝑚𝑚.𝑚𝑚𝑎𝑎𝑚𝑚  (PFCNN >  PF𝑙𝑙𝑖𝑖𝑚𝑚.𝑚𝑚𝑎𝑎𝑚𝑚), 
the new option is to determine whether to accept or reject 
the transition by the CNN evaluation without 3D 
evaluation. PF𝑙𝑙𝑖𝑖𝑚𝑚.𝑚𝑚𝑎𝑎𝑚𝑚  is defined in Equation 9, and 𝜅𝜅 =
2 was used in this study. Fig. 2 shows the pseudocode for 
SA with the screening technique.  

𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚.𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚 +  ∆𝑃𝑃𝑃𝑃������  +  𝜅𝜅𝜎𝜎            (9) 

Fig. 2. Pseudocode for SA with the screening technique 

 Ten optimizations were performed independently and 
as the results of the ten optimizations, the screening 
efficiency defined in Equation 10 is about 98.2% on 
average. And the average computation time is about 8.5 
hours on a single core of the Xeon E5-2660 v4 CPU. Fig. 
3 and Table Ⅳ show eight of the candidate LPs that 
satisfy the design limits of the cycle length and the 
peaking factor. Table Ⅴ summarizes the optimization 
results 

𝑆𝑆𝑎𝑎𝑟𝑟𝑒𝑒𝑒𝑒𝑙𝑙𝑆𝑆𝑙𝑙𝑆𝑆 𝑒𝑒𝑓𝑓𝑓𝑓𝑆𝑆𝑎𝑎𝑆𝑆𝑒𝑒𝑙𝑙𝑎𝑎𝑒𝑒 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑚𝑚
𝑘𝑘𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙 𝑒𝑒𝑒𝑒𝑎𝑎𝑙𝑙𝑐𝑐𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑚𝑚

∗ 100 (%) 
(10) 

Fig. 3. Optimal LPs (candidate LPs)

Table Ⅳ: Optimal LPs (candidate LPs) 

LP 
Index 

Cycle length (day) Peaking factor (-) 
CNN 

[a] 
3D 
[b] 

Error* 
(%) 

CNN 
[a] 

3D 
[b] 

Error* 
(%) 

1 494.2 494.1 0.01 1.56838 1.57120 -0.18 

2 495.3 496.0 -0.14 1.59817 1.58660 0.73 

3 498.3 498.7 -0.09 1.63463 1.59920 2.22 

4 494.9 494.8 0.03 1.63175 1.59130 2.54 

5 495.4 496.0 -0.11 1.64939 1.60000 3.09 

6 493.3 493.9 -0.11 1.62217 1.59560 1.67 

7 493.7 494.0 -0.07 1.65410 1.59250 3.87 

8 495.7 495.9 -0.04 1.64926 1.59810 3.20 

Error* : a−b
b
∗ 100 (%) 
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Table Ⅴ: Optimization results 

Run 
No. of LP evaluation Efficiency* 

(%) 
Time 
(hr) 3D CNN Total 

1 81 4762 4843 98.3 6 

2 156 7445 7601 97.9 10 

3 142 6064 6206 97.7 10 

4 29 5896 5925 99.5 3 

5 253 6163 6416 96.1 15 

6 87 5939 6026 98.6 6 

7 253 10845 11098 97.7 16 

8 2 3794 3796 99.9 1 

9 112 5776 5888 98.1 8 

10 135 6822 6957 98.1 9 
Efficiency* : Screening efficiency (%) 

3. Conclusions

In this study, the multi-objective LP optimizations 
were performed for the cycle 4 of Shin-Kori unit 1 (OPR-
1000). To reduce the high computational cost of SA, the 
prediction models using CNN was applied as the simple 
evaluation code, and ST was applied to reduce the 
uncertainty due to the error of the prediction model. Also, 
the new option to filter through 𝑃𝑃𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚.𝑚𝑚𝑎𝑎𝑚𝑚 was added to 
maximize screening efficiency. The uncertainty due to 
the robust screening option may increase, but the average 
screening efficiency increased significantly from about 
60% to 98%. As the efficiency increases, the average 
computation time is also reduced to about 8.5 hours when 
using a single core. Furthermore, as the future work of 
this study, the focus will be on reducing the uncertainty 
while maintaining the high screening efficiency to 
enhance the stability of optimization.  
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