In-situ APEC Leakage Correction for Homogenized Group Constants of Baffle-Reflector Region

December 17, 2020

Seongdong Jang and Yonghee Kim

Reactor Physics and Transmutation Lab. Department of Nuclear and Quantum Engineering Korea Advanced Institute of Science and Technology

Presented at the Korean Nuclear Society Virtual Autumn Meeting December 16-18, 2020

Table of Contents

1. Introduction

- 2. APEC leakage correction for baffle-reflector region
- 3. Numerical Results
- 4. Summary

5. Conclusions and Future Works

Introduction (1/4)

Generalized equivalence theory (GET) for 2-step procedures

- Assembly homogenization using all reflective BC (infinite lattice)
 - Computing cost for whole-core transport calculation is too large.
 - Very successful for the analysis of conventional LWR.

- Limitation of conventional 2-step procedures
 - Limited accuracy when the neighborhood effect is rather strong.
 - The ad-hoc critical spectrum correction was used for the leakage correction.

Introduction (2/4)

Albedo-corrected parameterized equivalence constants (APEC) method

Conventional 2-step-consistent approach for computational efficiency

- Equivalence constants are updated during nodal calculation using actual leakage information.
- Once determined APEC functions can be used for thousands of nodal calculations.
- > Almost reproduced the transport solution of UOX loaded PWR initial core analyses:
 - ~1 % of Max. assembly power error.
- Application of APEC leakage correction to commercial DeCART2D/MASTER code
 - Corrected group constants in the middle of a microscopic core depletion.
 - Approximated burnup-dependent APEC functions:
 FA of interest to be burned and that the surrounding FAs to be fresh.
- Improved APEC DF modeling

Introduction (3/4)

- Homogenization of baffle-reflector (BR) modeling *
 - Simplified spectral geometry

Whole core calculation at the BOC

καις

Conventional PWR

KNS Virtual Autumn Meeting, December 16-18, 2020

Introduction (4/4)

Objective of this paper

Application of the APEC leakage correction to the homogenized group constants of the BR region.

Codes and benchmark problem

- DeCART2D code
 - MOC based 2D transport lattice code.
 - Whole-core transport calculations (reference solution).
 - Lattice and color-set calculations.
- In-house nodal code
 - Implementation of the NEM within the p-CMFD formulation.
 - APEC leakage correction for both FAs and BR region.
- Partially MOX-loaded SMR benchmark problem

Options

▷ 47-group library.

Pransport corrected P0 XS for anisotropic scattering treatment.

- Default ray tracing
- two polar angles for 90°
- eight azimuthal angles for 90°
- ray-spacing of 0.02 cm

APEC leakage correction for BR region (1/7)

APEC leakage correction for BR region (2/7)

Albedo-corrected parameterized equivalence constants (APEC) method

- Normalized parameter for functionalization of APEC XSs and DFs
 - Current to flux ratio (CFR): normalized parameter representing a surface leakage of the FA

$$\alpha = \frac{J^{-}}{J^{+}} = \frac{\frac{1}{4}\phi - \frac{1}{2}J}{\frac{1}{4}\phi + \frac{1}{2}J}, \quad \longrightarrow \quad \frac{J}{\phi} = \frac{1}{2}\frac{(1-\alpha)}{(1+\alpha)}.$$
 (1)

Assembly-surface CFR

$$CFR_{G,s} \equiv \frac{J_{G,s}}{\phi_{G,s}}$$
(2)

Assembly-average CFR

$$CFR_G \equiv \frac{\sum_{s} J_{G,s}}{\sum_{s} \phi_{G,s}}$$

KNS Virtual Autumn Meeting, December 16-18, 2020

(3)

APEC leakage correction for BR region (3/7)

* Albedo-corrected parameterized equivalence constants (APEC) method

- APEC XS and DF Functions for FAs
 - APEC XS Functions

$$\Sigma_{x,g}^{FA} = \Sigma_{s,g}^{SA} + \Delta \Sigma_{x,g}^{FA}, \qquad (4)$$

$$\Delta \Sigma_{x,F}^{FA} = a_{x,F} CFR_{F}^{N} + b_{x,F} CFR_{T}^{N} + c_{x,F}, \quad (4.1)$$

$$\Delta \Sigma_{x,T}^{FA} = a_{x,T} CFR_T^N + b_{x,T} \left(CFR_T^N \right)^2 + c_{x,T}.$$
 (4.2)

• APEC DF Functions

$$DF_{g,s}^{FA} = ADF_{g,s}^{SA} + \Delta DF_{g,s}^{FA},$$
(5)

$$\Delta DF_{g,s}^{FA} = a_{g,1}FR_g^s + a_{g,2}CFR_g^s + a_{g,3}CFR_g^N + c_g.$$
(5.1)

where,

 Σ^{SA} : single assembly HGC,

$$F$$
: fast group, T : thermal group,

$$J_{g,s}: \text{ surface current, } \phi_{g,s}: \text{ surface flux, } \overline{\phi}_{g}^{Avg}: \text{ average flux,}$$
$$c_{x,G} \begin{cases} = 0 & \text{ for interior FA} \\ \neq 0 & \text{ for peripheral FA} \end{cases}$$

$$CFR_{g}^{N} \equiv \frac{\sum_{s} J_{g,s}}{\sum_{s} \phi_{g,s}}$$

Assembly-surface CFR

$$CFR_g^S \equiv \frac{J_{g,s}}{\phi_{g,s}}$$

Assembly-surface FR

$$FR_g^S \equiv \frac{\overline{\phi}_g^{Avg}}{\phi_{g,s}}$$

APEC leakage correction for BR region (4/7)

Albedo-corrected parameterized equivalence constants (APEC) method

APEC XS Functions

• The procedure of determining the APEC XS functions.

Lattice calculation (transport analysis)

Nodal analysis (diffusion analysis)

KNS Virtual Autumn Meeting, December 16-18, 2020

(1) Arrangement of data obtained by color-set calculation $a_{x,F}CFR_F + b_{x,F}CFR_T + c_{x,F} = \sum_{x,F} -\sum_{s,F}^{SA} = \Delta \sum_{x,F}$ $a_{x,T}CFR_T + b_{x,T} (CFR_T)^2 + c_{x,T} = \sum_{x,T} -\sum_{s,T}^{SA} = \Delta \sum_{x,T}$

② Determining coefficients by multiple linear regression

 $a_{x,F}, b_{x,F}, c_{x,F}$ $a_{x,T}, b_{x,T}, c_{x,T}$

(3) Updating APEC XS by corresponding CFRs $\Delta \Sigma_{x,F} = a_{x,F} CFR_F + b_{x,F} CFR_T + c_{x,F},$ $\Delta \Sigma_{x,T} = a_{x,T} CFR_T + b_{x,T} (CFR_T)^2 + c_{x,T}.$ $\Sigma_{x,g} = \sum_{s,g}^{SA} + \Delta \Sigma_{x,g}$

APEC leakage correction for BR region (5/7)

Albedo-corrected parameterized equivalence constants (APEC) method

APEC DF Functions

• The procedure of determining the APEC DF functions.

Lattice calculation (transport analysis)

Nodal analysis (diffusion analysis)

KNS Virtual Autumn Meeting, December 16-18, 2020

① Arrangement of data obtained by color-set calculation

$$a_{g,1}FR_{g,s} + a_{g,2}CFR_{g,s} + a_{g,3}CFR_g + c_g$$
$$= DF_{g,s} - ADF_{g,s}^{SA} = \Delta DF_{g,s}$$

(2) Determining coefficients by multiple linear regression

 $a_{g1}, a_{g2}, a_{g3}, c_g$

③ Updating APEC XS by corresponding CFRs

$$\Delta DF_{g,s} = a_{g,1}FR_{g,s} + a_{g,2}CFR_{g,s} + a_{g,3}CFR_g + c_g$$
$$DF_{g,s} = ADF_{g,s}^{SA} + \Delta DF_{g,s}$$

APEC leakage correction for BR region (6/7)

* Albedo-corrected parameterized equivalence constants (APEC) method

- APEC XS and DF Functions for BRs
 - APEC XS Functions

$$\Sigma_{x,g}^{BR} = \Sigma_{s,g}^{\text{Standard}} + \Delta \Sigma_{x,g}^{BR}, \qquad (6)$$

$$\Delta \Sigma_{x,F}^{BR} = a_{x,F} \Delta CFR_F^N + b_{x,F} \Delta CFR_T^N, \quad (6.1)$$

$$\Delta \Sigma_{x,T}^{BR} = a_{x,T} \Delta CFR_T^N + b_{x,T} \left(\Delta CFR_T^N \right)^2. \quad (6.2)$$

• APEC DF Functions

$$DF_{g,s}^{BR} = DF_{g,s}^{\text{Standard}} + \Delta DF_{g,s}^{BR}, \qquad (7)$$

$$\Delta DF_{g,s}^{BR} = a_{g,1} \Delta FR_g^s + a_{g,2} \Delta CFR_g^s + a_{g,3} \Delta CFR_g^N.$$
(7.1)

where,

 Σ^{SA} : single assembly HGC,

F : fast group, *T* : thermal group,

 $J_{g,s}$: surface current, $\phi_{g,s}$: surface flux, $\overline{\phi}_{g}^{Avg}$: average flux.

Assembly-averaged ΔCFR

$$\Delta CFR_{g}^{N} \equiv \frac{\sum_{s} J_{g,s}}{\sum_{s} \phi_{g,s}} - \frac{\sum_{s} J_{g,s}^{\text{Standard}}}{\sum_{s} \phi_{g,s}^{\text{Standard}}}$$

Assembly-surface ΔCFR

$$\Delta CFR_{g}^{S} \equiv \frac{J_{g,s}}{\phi_{g,s}} - \frac{J_{g,s}^{\text{Standard}}}{\phi_{g,s}^{\text{Standard}}}$$

Assembly-surface ΔFR

$$\Delta FR_g^S \equiv \frac{\overline{\phi}_g^{Avg}}{\phi_{g,s}} - \frac{\overline{\phi}_g^{Avg}, \text{Standard}}{\phi_g^{\text{Standard}}}$$

APEC leakage correction for BR region (7/7)

Implementation to NEM nodal calculation

NEM code with p-CMFD method for acceleration

Numerical Results (1/11)

Benchmark Problem

- Partially MOX-loaded SMR problem
 - Soluble boron free condition.
 - Hot zero power (HZP) condition \rightarrow No TH feedback consideration ۲

Numerical Results (2/11)

Benchmark Problem

- Partially MOX-loaded SMR problem
 - Soluble boron free condition.
 - Hot zero power (HZP) condition \rightarrow No TH feedback consideration

Numerical Results (3/11)

✤ Tendency of HGCs in BR region

- Partially MOX-loaded SMR Variant 1 problem
 - Relative error (%) of standard HGCs in the BR region.
 - → Significant discrepancies of HGCs due to the neutron spectrum change by partially MOX-loaded FA (A0).

Numerical Results (4/11)

Preprocessing for predetermining APEC functions

List of Color-set Calculation

KAIST

Numerical Results (5/11)

Generation of APEC functions for BR region

- APEC XS and DF Functions for BRs.
 - **APEC XS Functions** •

B3

A0

B2

C0

BR

$$\sum_{x,g}^{BR} = \sum_{s,g}^{\text{Standard}} + \Delta \sum_{x,g}^{BR}, \qquad (6)$$

Standard

BR

BR

BR

3

Baffle

Reflector

1

2

Vacuum BC

C0

C0

BR

$$\Delta \Sigma_{x,F}^{BR} = a_{x,F} \Delta CFR_F^N + b_{x,F} \Delta CFR_T^N, \quad (6.1)$$

$$\Delta \Sigma_{x,T}^{BR} = a_{x,T} \Delta CFR_T^N + b_{x,T} \left(\Delta CFR_T^N \right)^2. \quad (6.2)$$

Reflective BC

B2

A0

C0

BR

2.5316 cm

Vacuum BC

A0

B3

A0

C0

BR

APEC DF Functions ۲

$$DF_{g,s}^{BR} = DF_{g,s}^{\text{Standard}} + \Delta DF_{g,s}^{BR}, \qquad (7)$$

$$\Delta DF_{g,s}^{BR} = a_{g,1} \Delta FR_g^s + a_{g,2} \Delta CFR_g^s + a_{g,3} \Delta CFR_g^N.$$
(7.1)

(a) Single Assembly

Reflective

(b) Checkerboard color-set

Reflective BC

20.2528 cm

E

17.7212

Numerical Results (6/11)

- Results of partially MOX-loaded SMR problem
 - Effective multiplication factors, reactivity errors, relative RMS and maximum error in assembly power a: Relative root mean square error (%),

XS	DF	k _{eff}	∆p(pcm)	Max. ^b (%)	
DeCA	RT2D	1.053803			
HGC℃	SHGCd	1.057638	344.06	0.980	1.859
APEC ^e	SHGCd	1.053974	-9.18	0.337	0.728
APEC ^e	APEC ^e	1.053645	-14.26	0.361	0.718

RRMS Error (%) =
$$\sqrt{\frac{1}{n} \sum_{i}^{n} (\frac{P_{i}^{predicted} - P_{i}^{reference}}{P_{i}^{reference}} \times 100)^{2}}$$

b: Maximum absolute relative error in assembly power (%),

Relative Error (%) =
$$\frac{P^{predicted} - P^{reference}}{P^{reference}} \times 100$$

c: HGCs generated by lattice (FWC | ADF),

d: Standard HGCs of the SMR benchmark problem,

e: APEC correction for HGCs (APEC XS | APEC DF).

a a u	B3	A0	B2	C0
theoretically	1.09	1.324	1.061	0.961
	-0.780	-1.541	0.189	0.187
may occur	-0.110	0.227	-0.009	-0.728
oar	-0.018	0.295	0.028	-0.718
Cal		B 3	A0	C0
		0.991	1.064	0.682
quivalence		1.241	0.000	0.997
ninor.		0.394	0.235	-0.132
		0.434	0.216	-0.308
FA Туре			C0	
DeCART2I)		0.737	
FA: HGC BR: SH	GC (%)		1.859	
FA: APEC BR: SH	IGC (%)		0.014	

-0.136

- The APEC leakage-corrected HGCs should be theoretically identical to standard HGCs (SHGCs).
- The APEC leakage correction for the BR region may occur a minor discrepancy of HGCs due to the nonlinear correction during the nodal analysis.
- The results showed that the change of nodal equivalence occurred by APEC leakage correction in BR is minor.

KNS Virtual Autumn Meeting, December 16-18, 2020

FA: APEC | BR: APEC (%)

Numerical Results (7/11)

Results of partially MOX-loaded SMR variant problems

Effective multiplication factors, reactivity errors, relative RMS and maximum error in assembly power

Variant	1
---------	---

Variant 2

FA	BR	k _{eff}	Δρ(pcm)	RRMS (%)	* Max. (%)	*	FA	BR	k _{eff}	∆p(pcm)	RRMS (%)	S* Max.* (%)
DeCA	ART2D	1.138768		Variant	1		DeCART2D 1.0354		1.035491		Variant	2
HGC℃	SHGC₫	1.141329	197.08	0.895	1.072	2	HGC℃	SHGC₫	1.038042	237.34	0.752	1.520
APEC ^e	SHGC₫	1.139281	39.53	0.527	0.962	2	APEC ^e	SHGCd	1.035533	3.95	0.663	1.052
APEC ^e	APEC ^e	1.139196	33.03	0.484	0.833	3	APEC ^e	APEC ^e	1.053645	3.82	0.673	1.054
		C0	A0	C0	A0				A0	B3	A0	C0
		2.506	1.669	1.212	0.499				1.806	1.285	1.307	0.962
		0.156	-1.072	0.899	0.521				-0.880	0.117	-0.191	1.372
		0.024	0.276	-0.446	0.962				1.052	0.342	0.191	-0.977
		0.219	0.431	-0.413	-0.100				1.047	0.335	0.191	-0.904
			C0	B3	C0					B2	B2	B2
			1.411	0.654	0.360					1.147	0.822	0.444
			0.957	-0.933	1.056					-0.445	0.231	-0.225
			0.142	-0.291	-0.528					0.096	-0.292	-0.833
			0.269	-0.260	-0.833					0.087	-0.316	-0.878
	FA Туре	;		B3				FA Туре	•		B3	
	DeCART2	2D		0.294				DeCART2	2D		0.408	
FA: I	HGC BR: S	HGC (%)		-1.020			FA: H	IGC BR: S	HGC (%)		-1.520	
FA: A	APEC BR: S	HGC (%)		-0.680			FA: A	PEC BR: S	HGC (%)		-0.907	
FA: A	APEC BR: A	APEC (%)		-0.816			FA: A	PEC BR: A	APEC (%)		-1.054	

Numerical Results (8/11)

Results of partially MOX-loaded SMR variant problems

Effective multiplication factors, reactivity errors, relative RMS and maximum error in assembly power

Variant	3
---------	---

Variant 4

FA	BR	k _{eff}	Δρ(pcm)	RRMS* (%)	Max.* (%)		FA	BR	k _{eff}	Δρ(pcm)	RRMS (%)	5* Max.* (%)
DeCA	RT2D	1.049439		Variant 3		1	DeCART2D 1.		1.062324		Variant	4
HGC℃	SHGCd	1.052795	303.78	1.636 3.317			HGC⁰	SHGCd	1.065042	240.21	0.818	1.325
APEC ^e	SHGCd	1.049892	41.12	1.063	2.438		APEC ^e	SHGCd	1.062192	-11.69	0.813	2.341
APEC ^e	APEC ^e	1.049334	-9.58	0.509	0.844		APEC ^e	APEC ^e	1.062068	-22.68	0.521	0.918
		B 3	B2	B3	A0				A0	B3	C0	B3
		1.004	1.103	0.966	0.685				1.566	1.240	1.525	0.586
		-3.317	-1.342	-0.994	0.847				-0.760	0.210	0.098	-1.177
		-1.215	-0.698	-0.673	1.591				0.613	0.056	-1.036	-0.017
		-0.458	-0.100	-0.383	0.453				0.830	0.234	-0.918	0.085
			A0	C0	CO					A0	B2	C0
			1.437	1.382	0.723					1.313	0.869	0.564
			-1.308	1.889	1.660					-0.990	1.013	0.479
			0.404	-0.130	-0.263					0.381	0.357	-0.301
			0.828	-0.022	-0.719					0.465	0.299	-0.479
FA Type DeCART2D FA: HGC BR: SHGC (%)			A0 0.841 1.558			FA: H	FA Type DeCART2 IGC BR: S	2 D HGC (%)		A0 0.551 1.325		
FA: A FA: A	PEC BR: S PEC BR: A	HGC (%) PEC (%)		2.438 0.844	/		FA: A FA: A	PEC BR: S PEC BR: A	HGC (%) PEC (%)		2.341 0.417	

Numerical Results (9/11)

- Results of partially MOX-loaded SMR variant problems
 - Effective multiplication factors, reactivity errors, relative RMS and maximum error in assembly power

						_		
FA	BR	k _{eff}	∆p(pcm)	Max.* (%)				
DeCA	RT2D	1.111130	Variant 5					
HGC⁰	SHGC₫	1.113556	196.09	0.942	1.506			
APEC ^e	SHGCd	1.111501	30.01	0.560	0.944			
APEC ^e	APEC ^e	1.111404	22.17	0.651	0.890			

Variant 5

i i	(,0)	(,0)				
		Variant 5		1.111130	RT2D	DeCA
	1.506	0.942	196.09	1.113556	SHGC ^d	HGC℃
•	0.944	0.560	30.01	1.111501	SHGCd	APEC ^e
	0.890	0.651	22.17	1.111404	APEC ^e	APEC ^e
	C0	B2	A0	C0		
	590	0.001	1 (54	2 792		

	C0	A0	B2	CO	
	2.783	1.654	0.881	0.589	
	0.007	-1.506	0.488	1.104	
	0.158	0.351	-0.250	-0.611	
	0.438	0.581	-0.182	-0.815	
		B3	C0	A0	
		1.031	0.911	0.371	
		0.854	0.922	0.701	
		0.252	-0.724	0.944	
		0.408	-0.779	-0.890	
FA Туре			B3		
DeCART2I)		0.375		
FA: HGC BR: SH	GC (%)		-0.828		
FA: APEC BR: SH		-0.214			
FA: APEC BR: AF	PEC (%)		-0.534		

The APEC leakage correction in BR region ds to improve the nodal equivalence in itrarily introduced variant core analyses.

improvements of the nodal equivalence the APEC leakage correction in BR are stantial when the partially MOX-loaded FAs are located at the peripheral region contacted to BR.

Numerical Results (10/11)

Tendency of APEC leakage-corrected HGCs in BR region

- Partially MOX-loaded SMR Variant 1 problem
 - Relative error (%) of standard HGCs in the BR region.
 - → Substantial improvements in the accuracy of HGCs by APEC leakage correction in the BR region.

	-0. 39 -1. 0.		-0.08 39.03 -1.70 0.44	BR ₁ 3.24 5.12	1.29 0.74	_		A0		0.35 -2.36 -0.36 -0.08	BR ₁ -0.45 -0.98	0.30 -0.13
C 0			1.59 1.04 -1.03 0.05	BR ₂ 0.35 0.52	0.10 0.08			CO		0.55 -0.74 -0.98 -0.01	BR ₂ 0.03 -0.13	-0.12 0.00
	1.18			DF _{T,1}				0.74 0.36			DF _{T,1}	
1.91 -0.36	BR ₃		DF _{L,1} DF _{L,2}	Format			0.83 -1.15	BR ₃		DF _{L,1} DF _{L,2}	Format	
-0.28 -0.10	-1.36 -0.88	0.22 -0.69	D ₁ D ₂	Σ _{a1} Σ _{a2}	$\begin{array}{c} \Sigma_{s1 \rightarrow 2} \\ \Sigma_{s2 \rightarrow 1} \end{array}$		-1.08 -0.07	-0.41 -0.62	-0.16 -0.69	D ₁ D ₂	Σ _{a1} Σ _{a2}	$\begin{array}{c} \Sigma_{s1 \rightarrow 2} \\ \Sigma_{s2 \rightarrow 1} \end{array}$

Numerical Results (11/11)

***** Results of Relative RMS Error (%) of the HGCs

HGCs from partially MOX-loaded SMR and variant cores.

	D_1	Σ_{a1}	$\nu \Sigma_{f1}$	$\nu\Sigma_{s1\rightarrow 2}$	DF_1	D_2	Σ_{a2}	$\nu \Sigma_{f2}$	$\nu \Sigma_{s2 \rightarrow 1}$	DF_2		
		-		A	0 Type FA			-				
Case 1 ^a	0.273	0.552	0.370	0.690	0.973	0.558	1.418	1.620	5.233	6.235		
Case 2 ^b	0.092	0.196	0.121	0.231	0.558	0.035	0.146	0.166	0.283	2.568		
Case 3°	0.090	0.193	0.121	0.228	0.553	0.024	0.121	0.138	0.148	1.837		
	B2 Type FA											
Case 1	0.129	0.313	0.191	0.690	0.814	0.165	0.385	0.642	2.541	1.848		
Case 2	0.048	0.198	0.070	0.087	0.795	0.062	0.136	0.243	0.973	1.422		
Case 3	0.030	0.063	0.074	0.107	0.731	0.008	0.072	0.089	0.160	1.193		
	B3 Type FA											
Case 1	0.380	0.962	0.330	1.253	0.854	0.148	0.329	0.815	2.457	2.105		
Case 2	0.067	0.176	0.152	0.258	0.761	0.023	0.069	0.055	0.112	1.275		
Case 3	0.067	0.175	0.152	0.258	0.761	0.023	0.069	0.054	0.110	1.275		
				С	0 Type FA							
Case 1	0.532	1.285	0.828	2.882	1.249	0.191	0.831	0.983	2.854	2.946		
Case 2	0.115	0.184	0.120	0.279	0.958	0.042	0.066	0.075	0.203	2.356		
Case 3	0.116	0.184	0.120	0.282	0.958	0.042	0.065	0.074	0.205	2.337		
				Baf	fle-Reflecto	or						
Case 1	0.751	1.636	-	0.743	0.876	0.218	2.377	-	0.563	18.163		
Case 2	0.751	1.636	-	0.743	0.876	0.218	2.377	-	0.563	18.163		
Case 3	0.663	0.667	-	0.629	0.496	0.054	0.488	-	0.421	1.666		

a: FA: HGC | BR: SHGC, b: FA: APEC | BR: SHGC, c: FA: APEC | BR: APEC

Summary

Summary

APEC leakage correction for BR region

- DeCART2D code was used to whole-core, lattice, and color-set transport calculations.
- In-house nodal code was used to perform the APEC leakage correction in FAs and BR region.
- APEC functions for BR region has been introduced in terms of Δ CFR and Δ FR as below:

 $\Sigma_{x,g}^{BR} = \Sigma_{s,g}^{\text{Standard}} + \Delta \Sigma_{x,g}^{BR},$ $\Delta \Sigma_{x,F}^{BR} = a_{x,F} \Delta CFR_F^N + b_{x,F} \Delta CFR_T^N,$ $\Delta \Sigma_{x,T}^{BR} = a_{x,T} \Delta CFR_T^N + b_{x,T} \left(\Delta CFR_T^N\right)^2.$

 $DF_{g,s}^{BR} = DF_{g,s}^{\text{Standard}} + \Delta DF_{g,s}^{BR},$ $\Delta DF_{g,s}^{BR} = a_{g,1}\Delta FR_g^{S} + a_{g,2}\Delta CFR_g^{S} + a_{g,3}\Delta CFR_g^{N}.$

- Partially MOX-loaded SMR benchmark problem
 - Partially MOX-loaded SMR and variant core problems were introduced for performing APEC leakage correction for FAs and BR region.

Conclusions and Future Works

Conclusions

- > The APEC leakage correction for HGCs of the BR region has been proposed.
- It was demonstrated that the APEC leakage correction based on the standard HGCs of BR can improve the nodal equivalence in terms of reactivity error (pcm) and relative error (%) in assembly power.
- It is concluded that the in-situ APEC leakage correction can lead to a very accurate and reliable multiplication factor and power distribution, not only in the case of FAs but also BR region.

Future Works

> APEC leakage correction of BR region for the macroscopic depletion analysis.

Thank you for your attention!

