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1. Introduction

The atmospheric dispersion of radioactive materials 

should be evaluated for the assessment of environmental 

impact by radiation in the event of an accident and level 

3 Probabilistic Safety Assessment (PSA) which are 

performed for obtaining construction permits and 

operating licenses in South Korea respectively. The 

governing equation of the air dispersion can be derived 

by the law of conservation of mass and it has a second-

order partial differential equation form. [1] Currently, 

most of the computer code for level 3 PSA uses the 

Gaussian plume or Gaussian puff model, which are 

analytic solutions, as an air dispersion model. [2] 

Obtaining the analytic solution requires assumptions, so 

it may not be enough to understand the actual 

phenomenon. There are various methods to obtain the 

solution of the partial differential equation such as the 

Finite Difference Method (FDM), Computational Fluid 

Dynamics (CFD) model, and spectral analysis, in 

addition to the analytic solution. [3] In this paper, we 

present a method for solving the air dispersion equation 

by using the recently published Physics Informed Neural 

Network (PINN) method. [4] The PINN is a method to 

approximate a physical model by assuming the latent 

solution as a deep neural network and optimizing it. 

Unlike the analytic solution, it rarely needs assumptions 

and therefore, it can obtain a solution without 

transformation of the original equation. In this paper, we 

review the air dispersion model and demonstrate the 

procedure of obtaining the solution of it by using the 

PINN. 

2. Air dispersion model

The concentration of a contaminant such as the 

radioactive material at the location (𝑥, 𝑦, 𝑧) and time 𝑡 ≥
0 can be derived by the law of conservation of mass as 

follows:  

𝜕𝐶

𝜕𝑡
+ ∇ ∙ 𝐽 = 𝑆 (1) 

where, 𝐶(𝑥, 𝑦, 𝑧, 𝑡)  [𝑘𝑔/𝑚3]  is a concentration of a 

contaminant, 𝐽(𝑥, 𝑦, 𝑧, 𝑡) [𝑘𝑔/𝑚2𝑠] is a mass flux, and

𝑆(𝑥, 𝑦, 𝑧, 𝑡) means a source or sink term. 

For the air dispersion, mass flux 𝐽  is formed by

diffusion and advection effect, therefore it can be written 

as follows: 

𝐽 = 𝐽𝐷 + 𝐽𝐴 (2) 

𝐽𝐷 = −𝐾∇𝐶

𝐽𝐴 = 𝐶�⃗⃗�

where, 𝐾 = 𝑑𝑖𝑎𝑔(𝐾𝑥, 𝐾𝑦, 𝐾𝑧) [𝑚2/𝑠]  is a diffusion

coefficient, �⃗⃗� = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) [𝑚/𝑠] is a wind vector.

By substitution of the equation (2) into the equation 

(1), the equation (1) can be rewritten as follows: 

𝜕𝐶

𝜕𝑡
+ 𝛻 ∙ (𝐶�⃗⃗�) = 𝛻 ∙ (𝐾𝛻𝐶) + 𝑆 (3) 

The equation (4) shows the Gaussian plume model 

which is used for MACCS code for level 3 PSA. It is an 

analytic solution of the equation (3) that can be derived 

with the assumptions as follows: [1] 

 The contaminant is emitted with a constant rate 

from a single point source. 

 The wind velocity and direction (𝑥-direction) 

are constant. 

 The solution is steady state. 

 The wind velocity is sufficiently large that the 

diffusion in the 𝑥-direction is much smaller than 

advection. 

�̅�(𝑥, 𝑦, 𝑧) =
𝑄
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2𝜎𝑦
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× (exp (
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2𝜎𝑧
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2𝜎𝑧
2
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(4) 

where, �̅�(𝑥, 𝑦, 𝑧) is a time-averaged concentration, 𝑄 is

an emission rate, �̅� is a time-averaged wind speed at the 

height of the release ℎ, and 𝜎𝑦  and 𝜎𝑧  are a horizontal

and vertical diffusion parameter. 

The Gaussian plume model estimates time-averaged 

concentration distribution with a long-term time scale. 

Therefore, it is not possible to simulate the variation of 

the concentration distribution over time, and the 

reflection of the parameters such as wind and diffusion 

coefficient is restricted. 

3. Physics informed Neural Network (PINN)

The PINN is a method to approximate a PDE by 

assuming the latent solution as a deep neural network and 

optimizing it by using an initial and boundary condition. 

It uses an original equation without assumption, so it is 

possible to estimate time-dependent air dispersion 

behavior and reflect various conditions of wind and 

diffusion coefficient parameters. In this section, we 

present the procedure of solving the air dispersion 

equation using the PINN. For the convenience of 



explanation, let us consider a 1-dimensional air 

dispersion equation without source term as follows: 

𝜕𝐶

𝜕𝑡
+

𝜕

𝜕𝑥
(𝐶�⃗⃗�) −

𝜕

𝜕𝑥
(𝐾

𝜕

𝜕𝑥
𝐶) = 0 (5) 

𝐶(−∞, 𝑡) = 0 

𝐶(∞, 𝑡) = 0 

The second and third equation of the equation (5) present 

the boundary conditions. Then, let us define the left-hand 

side of the equation (5) as 𝑓(𝑥, 𝑡). 

𝑓 =
𝜕𝐶

𝜕𝑡
+

𝜕

𝜕𝑥
(𝐶�⃗⃗�) −

𝜕

𝜕𝑥
(𝐾

𝜕

𝜕𝑥
𝐶) (6) 

and proceed by assuming the latent solution 𝐶(𝑥, 𝑡) as a 

deep neural network which has 𝑥  and 𝑡  as inputs and 

concentration 𝐶 as an output. 

𝐶 = 𝑁𝑁𝐶(𝑥, 𝑡) (7) 

The assumed network is optimized by minimizing the 

mean squared error loss defined as follows: 

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝐶 + 𝑀𝑆𝐸𝑓 (8) 

𝑀𝑆𝐸𝐶 =
1

𝑁𝐶
∑(𝑁𝑁𝐶(𝑥𝐶

𝑖 , 𝑡𝐶
𝑖 ) − 𝐶𝑖)

2

𝑁𝐶

𝑖=1

𝑀𝑆𝐸𝑓 =
1

𝑁𝑓
∑ 𝑓(𝑥𝑓

𝑖 , 𝑡𝑓
𝑖 )

2

𝑁𝑓

𝑖=1

where, {𝑥𝐶
𝑖 , 𝑡𝐶

𝑖 , 𝐶𝑖} (𝑖 = 1,2,3, … , 𝑁𝐶)  is a training data

set of the initial and boundary condition, and 

{𝑥𝑓
𝑖 , 𝑡𝑓

𝑖 } (𝑖 = 1,2,3, … , 𝑁𝑓) is randomly sampled data set.

We implemented the PINN method by using the Python 

programming language and the Tensorflow 2.0 library. 

In this study, the assumed deep neural network consists 

of nine layers, excluding input and output layers, and 

each layer has 64 nodes. The nodes of the input layer 

consist of the position and time 𝑡  values. The output 

Fig. 1. The results of air dispersion simulation using PINN 
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layer returns the concentration corresponding to the input 

position and time. The developed code for this study is 

available at 

https://github.com/gibeom92/PINN_dispersion. 

4. Results

In this study, we solved the 2-dimensional air 

dispersion equation using the PINN. The simulation was 

performed mainly focusing on presenting the change of 

the distribution over time, therefore we note that the 

results do not mean the exact amount of a particular 

radioactive material. 

The simulation area is set as 20𝑚 × 20𝑚  (−20 <
𝑥 < 20, −20 < 𝑦 < 20). The wind vector is assumed as 

(𝑢𝑥, 𝑢𝑦) = (5, 5)[𝑚/𝑠] . The diffusion coefficient is

assumed that it increases linearly over distance according 

to [5]. The initial distribution is assumed as 1/

cosh(√𝑥2 + 𝑦2). 

Fig. 1 shows the results of the simulation. It is shown 

that the center of the distribution moves according to the 

wind vector. Because the diffusion coefficient increases 

over the distance, the distribution changes 

asymmetrically. 

5. Conclusions

Currently, for the air dispersion model, most of the 

computer code for calculating the dispersion of 

radioactive materials uses the Gaussian plume or 

Gaussian puff model that are analytic solutions. In the 

procedure of derivation, the analytic solution needs the 

assumptions that restrict the parameters such as the wind 

and diffusion coefficient. To compensate for the 

limitations, we suggested the PINN method for solving 

the air dispersion equation and presented the procedure 

of simulating radioactive material dispersion with a 

simple example. For further study, we plan to introduce 

this method into the real-time simulation framework of a 

radiological emergency that contains an analysis of 

evacuation and radioactive material dispersion and the 

effect of infrastructures.  
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