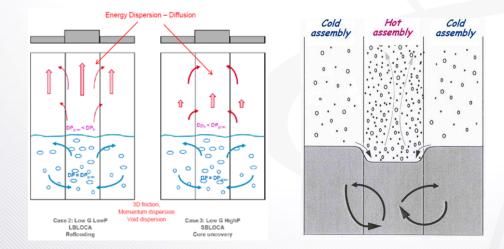
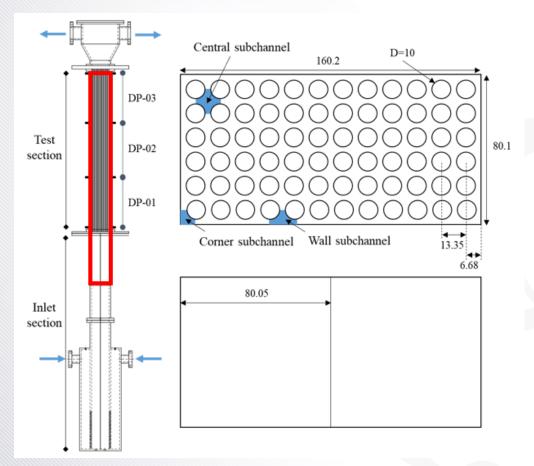
Preliminary Simulation Results for 6x12 Rod Bundle Test Using OpenFOAM


Byong Guk Jeon^{1*}, Gun Hong Kim², Seok Kim¹, Hyeokjun Byeon¹, Sang-Ki Moon¹

1 Korea Atomic Energy Research Institute, Daedeok-Daero 989-111, Yuseong-Gu, Daejeon, Republic of Korea 2 OpenCAE, Republic of Korea

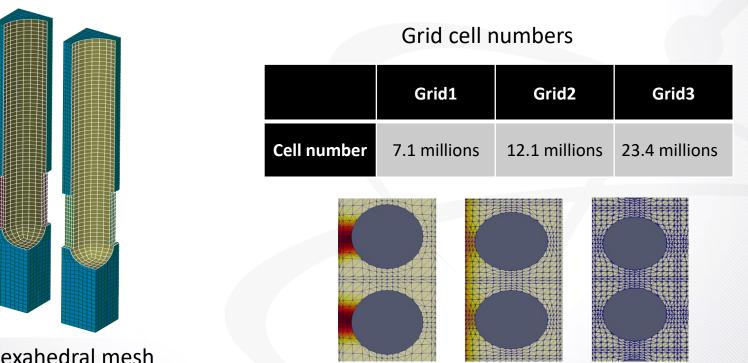

01 Background and Objective

- Under accident conditions, e.g. loss of coolant accident, fuels can be partially exposed and three dimensional cross-flow mixing can take place among assemblies with different burnup, or decay heat levels.
- To explore single-phase turbulent-mixing phenomena across sub-channels, a 4 x 6 rod bundle test, PRIUS-I, was conducted and currently a 6 x 12 rod bundle test, PRIUS-II, is being conducted
- In this research, we used OpenFOAM, a free CFD software, for preliminary simulation of PRIUS-II. Through the calculation, we will assess the adequacy of turbulence models.

Multi-D. two-phase flow phenomena at LOCA (D. Bestion, 2015)

02 Experimental facility- PRIUS-II

Unheated 6x12 rod bundle (height of 1.5 m, atmospheric P.)


ReDh =0 -15,000 (capacity)

Velocity/ Turbulence Intensity Measurement: PIV-matching index of refraction (MIR) technique

PRIUS-II Schematic (Red area: computational domain)

03Calculation Set-up

- Grids were generated using SALOME software.
- Hexahedral grids was used.
- Three types of grids were made for grid sensitivity tests.

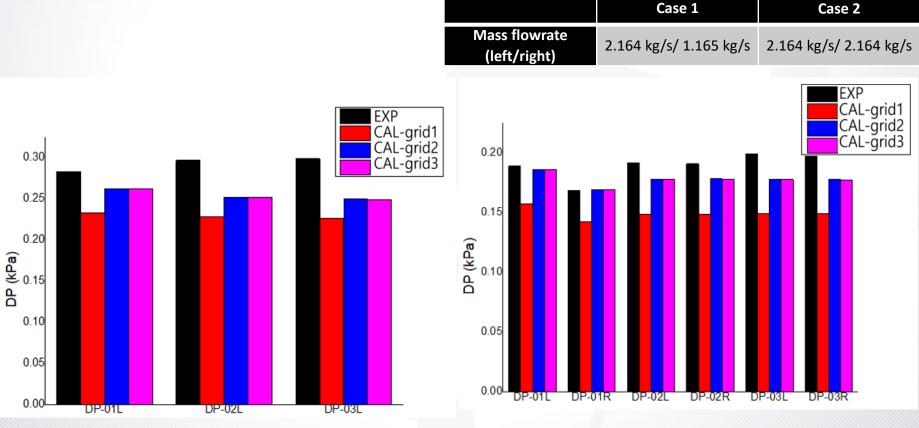
3D hexahedral mesh models for quarter-blocks

Grids near PRIUS-II rod bundles

03Calculation Set-up

- OpenFOAM v2006(the latest version)
- Parallel computing with 30 cores
- simpleFoam solver for incompressible flow
- k-ω SST/ Shin quadratic k-ε turbulence model
- Steady calculation
- Fluid property reflected

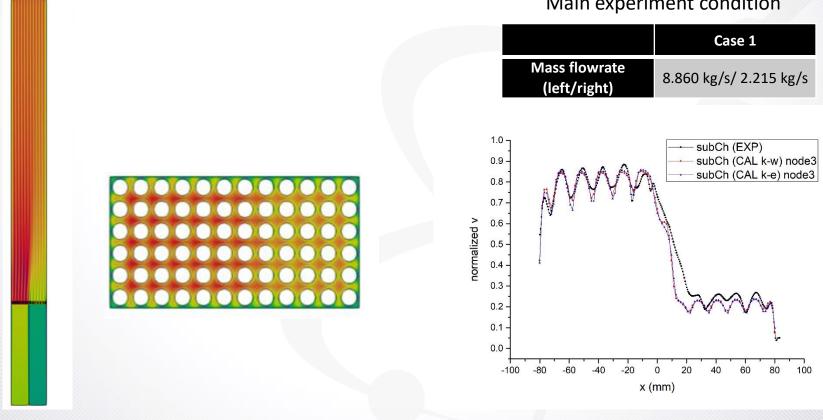
Default turbulence models in OpenFOAM


Model Type	Turbulence Model	Model Name
Linear-Eddy Model	k-epsilon k-omega-SST	kEpsilon kOmegaSST
Non-Linear-Eddy Model	Lien cubic k-epsilon Shin quadratic k-epsilon	LienCubicKE ShihQuadraticKE
Reynolds Stress Transport M odel	Launder, Reece and Rodi Speziale, Sarkar and Gatski	LRR SSG

04 Calculation Results

- For a preliminary water experiment, dP values were calculated using different grids.

Preliminary experiment condition


- Grid 2/3 gave the converged results.
- Grid 3 was used for the main calculations.

Grid sensitivity results for water test

4Calculation Results

- For the main test using Nal-water solution, different turbulent models were assessed. -
- OpenFOAM calculation simulated the gradual mixing of fluid.
- $k-\omega$ and $k-\varepsilon$ turbulent models gave almost identical velocity profile, which was similar to the measured values.

Main experiment condition

Velocity profile (Left: side view, right: top view)

Velocity profile

05Conclusion

- PRIUS-II experiments are being conducted for examining cross-flow mixing models.
- In parallel to the experiment, a CFD code calculation using openFOAM was prepared to evaluate turbulence models and to provide unmeasured local values
- A preliminary calculation was made using an incompressible solver for steady flow
- The adequacy of the generated grid was confirmed through a grid sensitivity study against water experiment results.
- For the main test using Nal-water solution, different turbulent models were assessed.

THANK YOU

