## An Improved Deterministic Truncation of Monte Carlo Solutions for Nuclear Reactor Analysis



## December 18, 2020 Inhyung Kim and Yonghee Kim Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

Presented at KNS Autumn Meeting Online, December 16-18, 2020

## Monte Carlo (MC) calculation for high-fidelity reactor criticality analysis

- A stochastic method to solve a statistical problem finding out the average behavior of the unknown parameters based on probabilistic inference
  - Simulation of individual particle based on stochastic random sampling
  - Calculation of reactor parameters based on statistical treatment (i.e. average and variance)

$$S^{i+1} = \frac{1}{k_{eff}^{i}} HS^{i} \qquad \Leftrightarrow \qquad (L+T-S)\psi^{i+1} = \frac{1}{k_{eff}^{i}} F\psi^{i} \qquad (1)$$
  
where  $k_{eff}^{i} = \frac{\text{fission rate at iteration } i}{\text{fission rate at iteration } i-1} = \frac{\text{fission rate at iteration } i}{\text{loss rate at iteration } i}$   
 $\psi$  : neutron angular flux  $\vec{r} = (x, y, z)$  : position vector  
 $S$  : neutron source  $H$  : transport operator  $\hat{\Omega} = (u, v, w)$  : direction vector  
 $L\psi = \hat{\Omega} \cdot \nabla \psi(\vec{r}, \hat{\Omega}, E)$  (leakage loss term)  
 $T\psi = \sigma_{i}(\vec{r}, \hat{\Omega}, E)\psi(\vec{r}, \hat{\Omega}, E)$  (collision loss term)  
 $S\psi = \int d\hat{\Omega}' \int dE' \sigma_{s}(\vec{r}, \hat{\Omega}', E')\psi(\vec{r}, \hat{\Omega}', E')$  (scattering production term)  
 $F\psi = \int d\hat{\Omega}' \int dE' v\sigma_{f}(\vec{r}, \hat{\Omega}', E')\psi(\vec{r}, \hat{\Omega}', E')$  (fission production term)



## Monte Carlo (MC) calculation for high-fidelity reactor criticality analysis

Pros

#### High accuracy

- Direct simulation of particles' whole behavior
- No discretization of variables (energy, angle, space)
- No constraints on geometry construction
- High parallelization
- Parallel calculation of individual particles

Cons

- Computationally expensive
- Large memory to describe explicit geometry and to utilize cross section data
- Long time to obtain the converged source distribution and to get quantities of interest
- Uncertainties and inconsistency
- Stochastic uncertainties
- Underestimation of variance
- Fundamental dilemma
- The main calculation is activated when the FSD converges
- Several studies have been conducted to accelerate the calculation speed and to reduce stochastic uncertainties more efficiently
  - Coarse mesh finite difference (CMFD) method
  - Modified power method
  - ...



### **Overview**

- A statistic treatment of deterministic solutions determined by FMFD-assisted MC
  - To accelerate the convergence of the fission source distribution by adjusting particles' weight
  - To provide a subset of solutions to the original MC approach





### Improved DTMC in a MC simulation



- ✓ p-CMFD (partial current based coarse mesh finite difference)
- ✓ p-FMFD (partial current based fine mesh finite difference)
- ✓ iDTMC (improved deterministic truncation of MC solution)



# DTMC

## **Deterministic truncation of MC solution method**

- A conventional numerical scheme of the DTMC method
  - FMFD has been applied throughout the simulation for both acceleration and variance reduction
  - Instability and inconsistency problems





# **iDTMC**

## Improved deterministic truncation of MC solution method

- A numerical strategy has been applied by the p-CMFD and p-FMFD in a combined way
  - p-CMFD : stable and consistent deterministic calculation, and more efficient than the p-FMFD
  - **p-FMFD** : reliable detailed reaction solutions





# **iDTMC**

## Improved deterministic truncation of MC solution method

### Single cycle coupled p-CMFD

- A stable and consistent deterministic calculation is available even without the cycle accumulation
- The p-CMFD enables the fast convergence of the FSD
- Cycle-cumulative decoupled p-FMFD
  - A stable and reliable deterministic solutions can be obtained with long cycle accumulation
  - The only reliable deterministic solutions are obtained from the p-FMFD method
  - · Coupling is not necessary because the FSD already converged





# CMFD & FMFD

### **Coarse mesh finite difference (CMFD) method**

- Solving the lower-order diffusion-like equation with the surface current correction
  - Fast and efficient deterministic calculation
  - MC-equivalent accuracy based on the generalized equivalent theory (GET)
- Unavailable to produce the detailed power distribution  $\rightarrow$  radial direction : assembly size (~ 20 cm)

### Fine mesh finite difference (FMFD) method

- Fine mesh grid to generate the detailed pin-wise power distribution
  - Radial direction : pin size (~ 1 cm)
  - Axial direction : 10 15 cm



# p-FMFD

## Partial current based fine mesh finite difference (p-FMFD) method

Neutron balance equation (diffusion-like one-group deterministic equation)

$$\sum_{s=x,y,z} \frac{a_s}{v_i} ((j_{s_1}^+ - j_{s_1}^+) - (j_{s_0}^+ - j_{s_0}^-)) + \sigma_a^i \phi_i = \overline{s_i}$$
(2)  
where  $j^{\pm}$ : partial current  
 $\sigma_a$ : absorption cross section  
 $v\sigma_f$ : no. of fission neutrons × fission XS  
 $\phi$ : neutron flux  
 $a$ : surface area  
 $v$ : node volume  
 $s$ : surface index  $(s_1 = i + 1/2 \text{ and } s_0 = i - 1/2)$   
 $i$ : node index  
 $\overline{s_i} = \frac{1}{k} v \sigma_f^i \phi_i$ : fission source  
 $j_{i+1/2}$   $j_{i+1/2}$   $j_{i+1/2}$   
 $s_0 = i - \frac{1}{2}$   $s_1 = i + \frac{1}{2}$ 
(2)



# One node p-CMFD

## **One-node CMFD acceleration**

- 1-CMFD scheme is applied to accelerate the FMFD deterministic calculation
- Coarse mesh grid
  - Radial direction : assembly size (~ 20 cm)
  - Axial direction : 20 30 cm



- Fast and efficient calculation
- High parallelism



# Methods :

## **Stochastic error in MC calculation**

- Stochastic error cannot be exactly estimated with a single MC run
  - Apparent standard deviation (SD) is underestimated due to a cycle correlation
  - Variance underestimation is more critical issue in iDTMC method because of correlation of the cycles and parameters



Fission reaction in current generation → Neutron source in next generation



### Error quantification of iDTMC method





### **Error quantification of iDTMC method**

- Flow chart





## Error quantification of iDTMC method

### FMFD parameters to calculate k<sub>eff</sub>

• Group constants (cross sections) are calculated from MC simulation every cycle





### **Random number generation**

- Latin hypercube sampling (LHS)
  - A statistical method for generating a near random sample of parameter values from a multidimensional distribution
  - An efficient random sampling by analyzing variable space

how many sample points to use

in which row and column the sample point was taken

• More evenly and fairly distributed for the limited sample size



**Random sampling** 



LHS sampling



## **Correlation sampling**

- Correlation matrix
  - Correlation between total, absorption and nu X fission cross section
  - Correlation coefficient can be calculated by

$$o_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}$$

• Correlation matrix can be composed as the follows

$$\mathbf{C} = \begin{array}{c|c} \Sigma_t & \Sigma_a & V\Sigma_f \\ \hline \Sigma_t & \rho_{t,t} & \rho_{t,a} & \rho_{t,f} \\ \hline \Sigma_a & \rho_{a,t} & \rho_{a,a} & \rho_{a,t} \\ \hline V\Sigma_f & \rho_{f,t} & \rho_{f,a} & \rho_{f,f} \end{array}$$

- Cholesky decomposition
  - Correlation matrix C (positive-definite) is decomposed to be a form of

$$\mathbf{C} = \mathbf{L}\mathbf{L}^T$$

· Positive definiteness should be improved for pseudo non-positive definite due to stochastic uncertainty

$$\mathbf{C'} = \mathbf{C} + 0.1 \times I$$



## **Correlation sampling**

- Conversion by inverse cumulative density function (CDF)
  - Underlying function is assumed to be a normal distribution
  - Random parameters can be obtained by the uniform random number (URN) calculated from LHS

$$p = \sqrt{2} erf^{-1}(\gamma) \in P^{3 \times N}$$
  
where  $erf$  : error function

 $\gamma$  : URN  $\in$  [0,1)

### Correlated parameters generation

• Correlated parameters can be generated by multiplying the Cholesky-decomposed lower triangular matrix and the matrix for random parameters calculated by LHS

$$\mathbf{G} = \mathbf{L} \times \mathbf{P}$$
$$(3 \times N_s) = (3 \times 3) \times (3 \times N_s)$$

### Correlated URN

- Correlated parameters are again converted to be URNs
- Correlated URNs can be obtained by the CDF conversion

$$\gamma' = \frac{1}{2} \left( 1 + erf\left(\frac{g}{\sqrt{2}}\right) \right)$$

where g: element of matrix **G** 



## **Correlation sampling**

#### Correlated cross section sampling

- Using the correlated URNs, the correlated cross sections can be sampled
- In the sampling of the cross section, the probability function is created by the FMFD parameters
  - → PDF made from the FMFD parameters does not follow the normal distribution
- The cross sections are directly sampled from the actual given PDF



### **Eigenvalue calculation by 1<sup>st</sup> order perturbation theory**

- 1<sup>st</sup> order perturbation theory
  - Multiplication factor can be easily calculated with the perturbed parameters



- Forward and adjoint fluxes are different in the p-FMFD method due to the correction factors
- But they are comparable each other with some reasons
- Therefore, the self-adjointness is assumed in 1<sup>st</sup> PT error quantification



## **Core configuration**

- A small modular reactor problem
- 7 X 7 fuel assemblies surrounded by a water reflector





## **Calculation condition**

- Total 112 cores of Xeon E5-2697 with clock speed of 2.60 GHz
- Skip p-CMFD : 1
- Skip early cycles : 5
- According to SCI
  - Minimum generation size = 6,000,000 histories per cycle

| Total number of fine nodes |   | No. of neutrons |   | Off-peaking |           | Optimum generation size |           |
|----------------------------|---|-----------------|---|-------------|-----------|-------------------------|-----------|
| 213,860                    | × | 5.86            | / | 0.2 =       | 6,266,098 | ≅                       | 6,000,000 |

- The number of inactive cycles were automatically determined
- 10 active cycles were used
- For real standard deviation, 20 independent runs simulated with different random seeds
- Reference solution :  $1.27774 \pm 1.2$  pcm
  - No. of histories : 6,000,000
  - No. of inactive cycles 120
  - No. of active cycles : 500
  - No. of batches : 2

### **FMFD** parameters

- Three pin positions are arbitrarily selected to characterize the FMFD parameters





### **FMFD** parameters

### - Convergence behavior; central region (62,59,10)



KAIST

### **FMFD** parameters

### - Convergence behavior; peripheral region (52,24,10)





### **FMFD** parameters





### **FMFD** parameters





### 1<sup>st</sup> PT vs. direct calculation

- The number of samples



Computing time of 1<sup>st</sup> PT vs. direct calculation for 100 samples

|             | 1st PT | Direct |
|-------------|--------|--------|
| Time (sec.) | 4.7    | 158.8  |



### **FSD** convergence

### - By the Shannon entropy





### **Multiplication factor & stochastic errors**

| Danamatan |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Cycle                                                                                                                         |         |         |         |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--|--|--|
| Fara      | meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       | 3                                                                                                                             | 10      | 15      | 20      |  |  |  |
|           | $k_{e\!f\!f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.27706 | 1.27763                                                                                                                       | 1.27781 | 1.27782 | 1.27778 |  |  |  |
| MC-CMFD   | $\sigma_{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | 18.3                                                                                                                          | 13.0    | 9.9     | 8.9     |  |  |  |
|           | $\sigma_{\rm r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46.4    | 24.2                                                                                                                          | 13.7    | 13.4    | 11.3    |  |  |  |
|           | $k_{e\!f\!f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.27777 | 1.27776                                                                                                                       | 1.27776 | 1.27775 | 1.27775 |  |  |  |
| DTMC      | $\sigma_{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       | Cycle131015277061.277631.277811.27782-18.313.09.946.424.213.713.4277771.277761.277761.27775-0.60.50.55.75.75.24.96.46.66.05.5 | 0.5     |         |         |  |  |  |
| IDIMC     | Parameter         Cycle           1         3         10         15 $k_{eff}$ 1.27706         1.27763         1.27781         1.277 $\sigma_a$ -         18.3         13.0         9.9 $\sigma_r$ 46.4         24.2         13.7         13.2 $k_{eff}$ 1.27777         1.27776         1.27776         1.2777 $\sigma_a$ -         0.6         0.5         0.5 $\sigma_r$ 5.7         5.7         5.2         4.9           1st PT         6.4         6.6         6.0         5.5 | 4.9     | 4.8                                                                                                                           |         |         |         |  |  |  |
|           | 1 <sup>st</sup> PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.4     | 6.6                                                                                                                           | 6.0     | 5.5     | 5.2     |  |  |  |

\*  $k_{eff}^{ref} = 1.27774 \pm 1.2 \text{ pcm}$ 



### Real standard deviation of the multiplication factor



Much more reliable solutions can be obtained with the iDTMC method Remind that the iDTMC method is designed to pursue the early truncation



## **Comparison of standard deviation**

- iDTMC vs. 1st PT



They show great agreement each other throughout the simulation The reliable stochastic error can be calculated with a single batch calculation











| real standard deviation of the 2D phi                               | howei -       | Cycle 10 | iDTMC        | Direct |
|---------------------------------------------------------------------|---------------|----------|--------------|--------|
| At cycle 10                                                         | -             | Avg.     | 0.009        | 0.009  |
|                                                                     |               |          | 1000<br>1000 |        |
| Martin within within worth within<br>Nitra Score worth worth within | 81114<br>1111 |          |              |        |
|                                                                     |               |          |              |        |
|                                                                     |               |          |              |        |
|                                                                     |               |          |              |        |
|                                                                     | 2003<br>2002  |          |              |        |
|                                                                     |               |          |              |        |

iDTMC

**Parameter sampling** 

 $\sigma_{i,j} = \frac{1}{N_b} \sum_{b}^{N_b} (p_{i,j}^b - \overline{p}_{i,j})^2 \text{ where } b : \text{batch number, } N_b : \text{No. of batches } (40)$ 



| Relative error distribution for the 2D pin po                                | ower        | Error (%)            | MC-CMFD       | iDTMC |       |
|------------------------------------------------------------------------------|-------------|----------------------|---------------|-------|-------|
|                                                                              |             | Avg.                 | 3.2           | 0.8   | _     |
| - Al Cycle I                                                                 |             | Max.                 | 32.2          | 7.5   | _ (%) |
|                                                                              | annach<br>S |                      |               |       | - 30  |
|                                                                              |             |                      |               |       | - 25  |
|                                                                              |             |                      |               |       | - 20  |
|                                                                              |             |                      |               |       | - 15  |
|                                                                              |             |                      |               |       | 10    |
|                                                                              | 72591       |                      |               | 62    | 5     |
| MC-CMFD                                                                      |             | iDTI                 | ИС            | _     | -     |
| $arepsilon_{i,j} = \left  rac{p_{i,j} - p_{i,j}^*}{p_{i,j}^*}  ight  	imes$ | :100 (%)    | where $p^*$ : refere | nce pin power | (41   | )     |
| KAIST 기이형 반사하의노무 치족 비                                                        | 박표 2020     | 년 12원 8익             |               |       | 36    |

| <b>Relative error distribution for the 2D pin</b>                      | power Error (%)                                     | MC-CMFD        | iDTMC | _          |
|------------------------------------------------------------------------|-----------------------------------------------------|----------------|-------|------------|
| At evolo 10                                                            | Avg.                                                | 1.0            | 0.6   | _          |
| - Al Cycle IU                                                          | Max.                                                | 9.6            | 5.6   | _ (%)      |
|                                                                        |                                                     |                | 142   | - 30       |
|                                                                        |                                                     |                |       | - 25       |
|                                                                        |                                                     |                | 10.20 | - 20       |
|                                                                        |                                                     |                |       | - 15       |
|                                                                        |                                                     |                |       | - 10       |
|                                                                        |                                                     |                | 12    | - 5        |
| MC-CMFD                                                                | iDT                                                 | MC             |       |            |
| $arepsilon_{i,j} = \left  rac{p_{i,j} - p_{i,j}^*}{p_{i,j}^*}  ight $ | $\frac{j}{2} \times 100 \ (\%)$ where $p^*$ : refer | ence pin power | (42   | <i>.</i> ) |



## **Computing time**

#### Deterministic calculation

| Mathada     |        | p-FMFD              |                    |
|-------------|--------|---------------------|--------------------|
| Methods     | р-сигр | w/o one-node p-CMFD | w/ one-node p-CMFD |
| Time (sec.) | 0.03   | 97.9                | 1.4                |

#### MC calculation

|                        | Standard MC | MC-CMFD | iDTMC |
|------------------------|-------------|---------|-------|
| No. of inactive cycles | 81          | 23.1    | 23.1  |
| No. of active cycles   | 10          | 10      | 10    |
| Inactive time (hr.)    | 1.2         | 0.7     | 0.8   |
| Active time (hr.)      | 0.29        | 0.29    | 0.51  |
| Total time (hr.)       | 1.47        | 0.95    | 1.29  |
|                        |             |         |       |

p-FMFD for solution prediction Variance estimation



### FOM for the multiplication factor





## **APR1400** quarter core problem

- 1<sup>st</sup> cycle fuel loading pattern
- 241 fuel assemblies
- Fuel zoning & Bas are modelled





### Axial configuration

### **Radial configuration**



## **Calculation condition**

- Total 112 cores of Xeon E5-2697 with clock speed of 2.60 GHz
- Skip p-CMFD : 1
- Skip early cycles : 5
- According to the SCI
  - Minimum generation size = 6,000,000 histories per cycle

| Total number of fine nodes | No. of neutrons | Off-peaking        | Optimum generation size |  |  |
|----------------------------|-----------------|--------------------|-------------------------|--|--|
| 586,112                    | × 5.86          | / 0.2 = 17,173,081 | ≅ 20,000,000            |  |  |

- The number of inactive cycles were automatically determined
- 10 active cycles were used
- For real standard deviation, 30 independent runs simulated with different random seeds
- Reference solution :  $1.20392 \pm 0.82$  pcm
  - No. of histories : 10,000,000
  - No. of inactive cycles 60
  - No. of active cycles : 300
  - No. of batches : 4

### **FSD** convergence behavior



Much faster source convergence is achieved in the big size reactor problem which has a higher dominance ratio compared to the standard MC



### **Multiplication factor & stochastic errors**

| Parameter |                    | Cycle                                                                                                                                                                                   |         |         |         |         |  |
|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|--|
|           |                    | 1                                                                                                                                                                                       | 3       | 10      | 15      | 20      |  |
|           | $k_{e\!f\!f}$      | 1.20390                                                                                                                                                                                 | 1.20392 | 1.20391 | 1.20394 | 1.20390 |  |
| MC-CMFD   | $\sigma_{a}$       | -                                                                                                                                                                                       | 10.8    | 10.0    | 6.5     | -       |  |
|           | $\sigma_{\rm r}$   | 16.6                                                                                                                                                                                    | 8.8     | 7.1     | 5.2     | 16.6    |  |
|           | $k_{e\!f\!f}$      | r       1 $k_{eff}$ 1.20390       1 $\sigma_a$ -       - $\sigma_r$ 16.6       - $k_{eff}$ 1.20392       1 $\sigma_a$ -       - $\sigma_r$ 2.9       1         1st PT       3.2       - | 1.20392 | 1.20389 | 1.20391 | 1.20392 |  |
| DTMC      | $\sigma_{a}$       | -                                                                                                                                                                                       | 0.4     | 0.4     | 0.4     | -       |  |
| IDIMC     | $\sigma_{\rm r}$   | 2.9                                                                                                                                                                                     | 2.9     | 2.8     | 2.0     | 2.9     |  |
|           | 1 <sup>st</sup> PT | 3.2                                                                                                                                                                                     | 2.8     | 2.7     | 2.8     | 3.2     |  |

\*  $k_{eff}^{ref} = 1.20392 \pm 0.82 \text{ pcm}$ 



### Real standard deviation of the multiplication factor



Much more reliable solutions are obtained with the iDTMC method compared to the CMFD Consistent results are shown in the different types of the problem







**iDTMC** 

$$\sigma_{i,j} = \frac{1}{N_b} \sum_{b}^{N_b} (p_{i,j}^b - \overline{p}_{i,j})^2 \text{ where } b \text{ : batch number, } N_b \text{ : No. of batches } (44)$$



#### Real standard deviation of the 2D pin power Cycle 10 MC-CMFD **iDTMC** At cycle 10 0.005 0.013 Avg. 0.1 0.09 0.08 0.07 100 C 100 Sec. 18. 0.06 STREET, NO. NO. OF STREET, NO. 0.05 ALC: N. MARCHINE, M. M. 0.04 0.03 70-20 50 0.02 . . . . . . . 100 0.01

MC-CMFD

**iDTMC** 

$$\sigma_{i,j} = \frac{1}{N_b} \sum_{b}^{N_b} (p_{i,j}^b - \overline{p}_{i,j})^2 \text{ where } b \text{ : batch number, } N_b \text{ : No. of batches } (45)$$



| Polative error distribution for the 2D pin power -                                           | Error (%)            | MC-CMFD       | iDTMC |      |
|----------------------------------------------------------------------------------------------|----------------------|---------------|-------|------|
| Relative error distribution for the 2D pin power                                             | Avg.                 | 2.3           | 0.42  |      |
| – At cycle 1                                                                                 | Max.                 | 22.3          | 3.8   | (%)  |
|                                                                                              | 128.201              |               | 343   | - 22 |
|                                                                                              |                      |               |       | - 20 |
|                                                                                              |                      |               | 14    | - 18 |
|                                                                                              |                      |               |       | - 16 |
|                                                                                              |                      |               |       | - 14 |
|                                                                                              |                      |               |       | - 12 |
|                                                                                              |                      |               |       | - 10 |
|                                                                                              |                      |               |       | - 8  |
|                                                                                              |                      |               |       | - 6  |
|                                                                                              |                      |               |       | - 4  |
|                                                                                              |                      |               |       | - 2  |
| MC-CMFD                                                                                      | iDTMC                |               |       |      |
| $\varepsilon_{i,j} = \left  \frac{p_{i,j} - p_{i,j}^*}{p_{i,j}^*} \right  \times 100 \ (\%)$ | where $p^*$ : refere | nce pin power | (4    | 6)   |
| KAIST 김인형, 박사학위논문 최종발표, 202                                                                  | 0년 12월 8일            |               |       | 47   |

| Polative error distribution for the 2D pin now                                        | Err       | or (%)              | MC-CMFD      | iDTMC |      |
|---------------------------------------------------------------------------------------|-----------|---------------------|--------------|-------|------|
| Relative error distribution for the 2D pin pow                                        |           | Avg.                | 0.8          | 0.4   |      |
| <ul> <li>At cycle 10</li> </ul>                                                       | N         | Лах.                | 7.5          | 3.5   | (%)  |
|                                                                                       | 12/2/2012 | 67.77 P.            |              | 'nf"  | 22   |
|                                                                                       |           |                     |              |       | - 20 |
|                                                                                       |           |                     |              |       | - 18 |
|                                                                                       |           |                     |              |       | - 16 |
|                                                                                       |           |                     |              |       | - 14 |
|                                                                                       |           |                     |              |       | - 12 |
|                                                                                       |           |                     |              |       | - 10 |
|                                                                                       |           |                     |              |       | - 8  |
|                                                                                       |           |                     |              |       | - 6  |
|                                                                                       |           |                     |              |       | - 4  |
|                                                                                       |           |                     |              |       | - 2  |
| MC-CMFD                                                                               | iC        | DTMC                |              |       |      |
| $\varepsilon_{i,j} = \left  \frac{p_{i,j} - p_{i,j}^*}{p_{i,j}^*} \right  \times 100$ | )(%) wher | $p = p^*$ : referen | ce pin power | (4    | 7)   |
| KAIST 김인형, 박사학위논문 최종발표                                                                | , 2020년 1 | 2월 8일               |              |       | 48   |

## **Computing time**

#### MC calculation

|                        | Standard MC | MC-CMFD | iDTMC |
|------------------------|-------------|---------|-------|
| No. of inactive cycles | 160         | 24.4    | 25.5  |
| No. of active cycles   | 10          | 10      | 10    |
| Inactive time (hr.)    | 14.0        | 2.4     | 2.4   |
| Active time (hr.)      | 0.9         | 0.9     | 1.0   |
| Total time (hr.)       | 15.0        | 3.3     | 3.4   |



### FOM for the multiplication factor



Much higher numerical performance is achieved with the iDTMC method over 5 to 30 times higher



# Conclusions

### Conclusions

- The iDTMC method has been developed for efficient neutornic reactor analysis
  - Potential bias and numerical instability disappear.
  - The convergence of the FSD is accelerated and thus the computing time is reduced.
  - The stochastic uncertainty is decreased even from the beginning of the active cycle.
  - The stochastic error can be reasonably measured by parameter sampling scheme.
  - The numerical performance is enhanced by the comparison of the conventional CMFD-assisted MC method.

### **Future work**

- Various applications
  - Burn up calculation
  - Multi-physics calculation
  - Fast reactor analysis



# Thank you for your attention