
Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Higher Order PN Solver in Method of Characteristics Code STREAM 

Anisur Rahman, Alexey Cherezov, and Deokjung Lee 

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology 

50 UNIST-gil, Ulsan, 44919, Republic of Korea  

*Corresponding author: anisur@unist.ac.kr, deokjung@unist.ac.kr

1. Introduction

STREAM [1], A three-dimensional method of 

characteristics (MOC) neutron transport code for light 

water nuclear reactor core analysis. Now a day direct 3D 

neutron transport model is popular for nuclear reactor 

analysis because of without approximation, availability 

of computer capability and more accurate results. 

General task of transport model is to solve time, energy 

and space dependent the Boltzmann neutron transport 

equation. In MOC, rewrite the multi-dimensional partial 

differential equation to an ordinary differential equation 

along a characteristic curve. Flat, Linear and Quadratic 

neutron source approximation used in MOC, 

nevertheless flat neutron source is more popular compare 

to others because of simplicity although Linear and 

Quadratic neutron source approximation allow bigger 

mesh to compare flat source. Flat source approximation 

with the used of higher order angle dependent neutron 

flux could generate more realistic outcome. In higher 

order, the scattering source is based on spherical 

harmonics (PN method) with Legendre polynomial 

functions. The scattering source is expanded using 

spherical harmonics odd and even parity of source 

components. Finally, the angular and scalar flux are 

calculated from the sources.  

MOC is widely used in two-dimensional neutron 

transport reactor physics field. On the other hand, flux 

and source are expressed with the combination of 2D 

radial and 1D axial component in 3D MOC problem. The 

flat source approximation with higher order scattering 

source scheme is capable to improve the solution 

accuracy in both isotropic and anisotropic sources with 

respect to the reference solution. This paper 

demonstrates up to order 3.   

STREAM uses 72-group library which was generated 

from continuous energy and 8-group is used for the 

CMFD. Convergence criteria for both k-effective and 

fission source use as STREAM default values (1.0E-5).  

2. Methodology

2.1 3D Method of Characteristics 

The 3D neutron transport equation in method of 

characteristics is a combination of 2D radial (x, y) and 

1D axial component. The 3D angular flux, scalar flux and 

source are written with radial and axial parts as: 

𝜓𝑖,𝑗,𝑘
𝑔
(𝑠, 𝑧) ≈ 𝜓𝑖,𝑗,𝑘

𝑔
(𝑠)𝑏(𝑧) 

𝜙𝑔(𝑠, 𝑧) ≈ �̅�𝑚
𝑔
𝑏(𝑧)     (1) 

𝑄𝑖,𝑗
𝑔
(𝑠, 𝑧) ≈ �̅�𝑖,𝑗,𝑚

𝑔
𝑏(𝑧)                                                               

where s is the radial coordinate in the x-y plane; z is 

the coordinate in the axial direction; i is the index of 

azimuthal angle; j is the index of polar angle; k is the 

index for MOC ray segment; g is the index of energy 

group; and m is the index for source region. 

For the axial domain (plane), the component of 

angular flux, scalar flux and source are written with a 

linear combination of upper and lower domain. Thus: 

{

 
𝜓𝑖,𝑗,𝑘
𝑔 (𝑠)𝑏(𝑧) = 𝜓𝑖,𝑗,𝑘

𝑔,0 (𝑠) +
𝑧

∆𝑧
(𝜓𝑖,𝑗,𝑘

𝑔,+ (𝑠) − 𝜓𝑖,𝑗,𝑘
𝑔,− (𝑠))

�̅�𝑚
𝑔
𝑏(𝑧) = �̅�𝑚

𝑔,0
+

𝑧

∆𝑧
(�̅�𝑚

𝑔,+
− �̅�𝑚

𝑔,−
)

�̅�𝑖,𝑗,𝑚
𝑔

𝑏(𝑧) = �̅�𝑖,𝑗,𝑚
𝑔,0

+
𝑧

∆𝑧
(�̅�𝑖,𝑗,𝑚

𝑔,+
− �̅�𝑖,𝑗,𝑚

𝑔,−
)

−∆𝑧

2
≤ 𝑧 ≤

∆𝑧

2
(2) 

where z0, z+ and z- are active, upper and lower region 

of the axial plane. The axial-average of each value is 

defined as: 

{
 

 
 𝜓𝑖,𝑗,𝑘

𝑔,0 (𝑠) =
1

2
(𝜓𝑖,𝑗,𝑘

𝑔,+ (𝑠) + 𝜓𝑖,𝑗,𝑘
𝑔,− (𝑠))

�̅�𝑚
𝑔,0
=

1

2
(�̅�𝑚

𝑔,+
+ �̅�𝑚

𝑔,−
)

�̅�𝑖,𝑗,𝑚
𝑔,0

=
1

2
(�̅�𝑖,𝑗,𝑚

𝑔,+
+ �̅�𝑖,𝑗,𝑚

𝑔,−
)

                           (3) 

The steady-state 3D neutron transport equation [1] 

along the characteristic line is 

𝑐𝑜𝑠 �̅�𝑗
𝜕𝜓𝑖,𝑗,𝑘

𝑔
(𝑠,𝑧)

𝜕𝑠
+ 𝑠𝑖𝑛 �̅�𝑗

𝜕𝜓𝑖,𝑗,𝑘
𝑔

(𝑠,𝑧)

𝜕𝑧
+ 𝛴𝑡𝑟,𝑚

𝑔
𝜓𝑖,𝑗,𝑘
𝑔
(𝑠, 𝑧) = 𝑄𝑖,𝑗,𝑚

𝑔
(𝑠, 𝑧)(4) 

where 𝛴𝑡𝑟,𝑚
𝑔

 is the transport cross section (XS) at flat 

source region m. 

Inserting the approximation of flux and source from 

Eq. (1) to (3) into Eq. (4), the transport equation is 

𝑐𝑜𝑠 �̅�𝑗
𝜕𝜓𝑖,𝑗,𝑘

𝑔 (𝑠)𝑏(𝑧)

𝜕𝑠
+ 𝑠𝑖𝑛 �̅�𝑗

𝜕𝜓𝑖,𝑗,𝑘
𝑔 (𝑠)𝑏(𝑧)

𝜕𝑧
+ 𝛴𝑡𝑟,𝑚

𝑔
𝜓𝑖,𝑗,𝑘
𝑔 (𝑠)𝑏(𝑧) 

                                                  = �̅�𝑖,𝑗,𝑚
𝑔

𝑏(𝑧)     (5)   

Integrating Eq. (5) over the axial domain and dividing 

by size of domain: 

𝑐𝑜𝑠 �̅�𝑗
𝜕𝜓𝑖,𝑗,𝑘

𝑔,0 (𝑠)

𝜕𝑠
+
𝑠𝑖𝑛 �̅�𝑗

∆𝑧
(𝜓𝑖,𝑗,𝑘

𝑔,+ (𝑠) − 𝜓𝑖,𝑗,𝑘
𝑔,− (𝑠)) + 𝛴𝑡𝑟,𝑚

𝑔
𝜓𝑖,𝑗,𝑘
𝑔,0 (𝑠) 

 = �̅�𝑖,𝑗,𝑚
𝑔,0

                                          (6) 

where the source is sum of the fission and scattering 

source defined as follow: 

�̅�𝑖,𝑗,𝑚
𝑔,0

=
1

4𝜋
(
𝜒𝑚
𝑔

𝑘𝑒𝑓𝑓
∑ 𝜈𝛴𝑓,𝑚

𝑔′
�̅�𝑚
𝑔′,0

𝑔′ +∑ 𝛴𝑠,𝑚
𝑔.→𝑔

�̅�𝑚
𝑔′,0

𝑔′ )     (7) 

Rewrite Eq. (6) by adding the term 
2 sin �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,−
(𝑠) in 

both side 

𝑐𝑜𝑠 �̅�𝑗
𝜕𝜓𝑖,𝑗,𝑘

𝑔,0 (𝑠)

𝜕𝑠
+
2 𝑠𝑖𝑛 �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,0 (𝑠) + 𝛴𝑡𝑟,𝑚

𝑔
𝜓𝑖,𝑗,𝑘
𝑔,0 (𝑠) 

                                    = �̅�𝑖,𝑗,𝑚
𝑔,0

+
2 𝑠𝑖𝑛 �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,−
(𝑠)     (8) 

The term 
2 sin �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,−
(𝑠)  on the right-side act as a 

surface source from the bottom plane. It merged with the 

fission and scattering source. 

2 sin �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,− (𝑠) ≈

2 sin �̅�𝑗

∆𝑧
�̿�𝑖,𝑗
𝑔,−
(𝑠)

where, �̿�𝑖,𝑗
𝑔,−
(𝑠) is region average angular flux.

Finally, the general form of transport equation is 



 𝑐𝑜𝑠 �̅�𝑗
𝜕𝜓𝑖,𝑗,𝑘

𝑔,0
(𝑠)

𝜕𝑠
+ �̃�𝑡𝑟,𝑚

𝑔
𝜓𝑖,𝑗,𝑘
𝑔,0 (𝑠) = 𝑆�̅�,𝑗,𝑚

𝑔,0    (9) 

where, �̃�𝑡𝑟,𝑚
𝑔

is the modified transport cross section is 

defined as, 

�̃�𝑡𝑟,𝑚
𝑔

=
2 sin �̅�𝑗

∆𝑧
+ 𝛴𝑡𝑟,𝑚

𝑔

and, the total source is defined as 

𝑆�̅�,𝑗,𝑚
𝑔,0

= �̅�𝑖,𝑗,𝑚
𝑔,0

+
2 sin �̅�𝑗

∆𝑧
𝜓𝑖,𝑗,𝑘
𝑔,−
(𝑠) 

The analytical solution of Eq. (9) is 

𝜓𝑜𝑢𝑡,𝑖,𝑗,𝑘
𝑔,0

= 𝜓𝑖𝑛,𝑖,𝑗,𝑘
𝑔,0

𝑒−�̃�𝑡𝑟,𝑚
𝑔

𝑡𝑖,𝑗,𝑘
′

                  +
�̅�𝑖,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 (1 − 𝑒−�̃�𝑡𝑟,𝑚

𝑔
𝑡𝑖,𝑗,𝑘
′

)     (10) 

where 𝜓𝑜𝑢𝑡,𝑖,𝑗,𝑘
𝑔,0

 is the outgoing angular flux from the 

ray segment; 𝜓𝑖𝑛,𝑖,𝑗,𝑘
𝑔,0

is the incoming angular flux to the 

segment; 𝑡𝑖,𝑗,𝑘 the length of the segment projected on x-

y plane; ; 𝑡′𝑖,𝑗,𝑘is the actual length of segment.

The track average angular flux is defined as, 

�̅�𝑖,𝑗,𝑘
𝑔,0

=
∫ 𝜓𝑖,𝑗,𝑘

𝑔,0 (𝑠)𝑑𝑠
𝑡𝑖,𝑗,𝑘
′

0

∫ 𝑑𝑠
𝑡𝑖,𝑗,𝑘
′

0

  

  =

∫ {𝜓𝑖,𝑗,𝑘
𝑔,0 (0)𝑒−�̃�𝑡𝑟,𝑚

𝑔
𝑠 +

𝑆�̅�,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 (1 − 𝑒−�̃�𝑡𝑟,𝑚

𝑔
𝑠)}𝑑𝑠

𝑡𝑖,𝑗,𝑘
′

0

𝑡𝑖,𝑗,𝑘
′

=
�̅�𝑖,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 +

1

�̃�𝑡𝑟,𝑚
𝑔

𝑡𝑖,𝑗,𝑘
′ (𝜓𝑖𝑛, 𝑖,𝑗,𝑘

𝑔,0
−

�̅�𝑖,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 )(1 − 𝑒−�̃�𝑡𝑟,𝑚

𝑔
𝑡𝑖,𝑗,𝑘
′

)    (11) 

The region average angular flux is defined as, 

�̅̅�𝑖,𝑗,𝑚
𝑔,0

=
∑ �̅�𝑖,𝑗,𝑘

𝑔,0
𝑡𝑖,𝑗,𝑘
′ 𝑑𝑖𝑘∈𝑚

∑ 𝑡𝑖,𝑗,𝑘
′ 𝑑𝑖𝑘∈𝑚

= ∑ [
�̅�𝑖,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 +

𝑑𝑖 𝑐𝑜𝑠 𝜃𝑗

�̃�𝑡𝑟,𝑚
𝑔

𝐴𝑚
(
�̅�𝑖,𝑗,𝑚
𝑔

�̃�𝑡𝑟,𝑚
𝑔 − 𝜓𝑖𝑛, 𝑖,𝑗,𝑘

𝑔,0
) (1 − 𝑒−�̃�𝑡𝑟,𝑚

𝑔
𝑡𝑖,𝑗,𝑘
′

)]𝑘𝜖𝑚    (12) 

where 𝑑𝑖 is the ray spacing and 𝐴𝑚 is the analytic area

of flat source region m. 

The flat source region-wise scalar flux is calculated as 

𝜙𝑚
𝑔,0
= 4𝜋∑ ∑ �̅̅�𝑖,𝑗,𝑚

𝑔,0
𝜔𝑖𝜔𝑗𝑖𝑗                                    (13) 

where 𝜔𝑖  and 𝜔𝑗  are the weights for the azimuthal

angle and polar angle, respectively. 

2.2 MOC Scattering Source 

The angular dependence of the scattering cross section 

is expanded into a series of Legendre polynomials [2]. 

The scattering source is a function of incoming and 

outgoing direction of flight or the cosine of the angle 

between them and can be expanded in terms of scattering 

angle: 

𝜎𝑠(𝑟, 𝐸
′ → 𝐸, 𝜇0) =

1

4𝜋
∑ (2𝑙 + 1)𝑁
𝑙=0 𝜎𝑠

𝑙(𝑟, 𝐸′)𝑃𝑙(𝜇0)    (14) 

Apply the spherical harmonic theorem into Eq. (14) 

𝑃𝑙(𝜇0) =
4𝜋

2𝑙+1
∑ 𝑌𝑙,𝑚(𝛺)
𝑙
𝑚=−𝑙                                                          (15) 

From Eq. (7), the total source is the sum of fission and 

scattering source. The scattering source term is defined 

by 

𝑄𝑠(𝑟, 𝐸, 𝛺) = ∫ 𝑑𝐸′ ∫ 𝑑𝛺′[𝜎𝑠(𝑟, 𝐸
′ → 𝐸,𝛺′. 𝛺)𝜓(𝑟, 𝐸′, 𝛺′)]

4𝜋

0

∞

0
 (16)  

The spherical harmonics functions 𝑌𝑙,𝑚(𝛺)in Eq. 15 is

defined by: 

𝑌𝑙,𝑚(𝛺) = √
(2𝑙+1)

4𝜋
√
(𝑙−|𝑚|)!

(𝑙+|𝑚|)!
𝑃𝑙,|𝑚|(𝜇)𝑒

𝑖𝑚𝜑   , 0 ≤ |𝑚| ≤ 𝑛 ≤  ∞   (17) 

𝑃𝑙,𝑚(𝜇)is the associate Legendre function and μ and φ

are the cosine of polar angle and azimuthal angle of the 

direction of vector Ω.  

𝑃𝑙,𝑚(𝜇)

=  

{
 

 
 (−1)𝑚(1 − 𝜇2)

𝑚
2 (

𝑑

𝑑𝜇
)
𝑚

𝑃𝑙(𝜇)      𝑚 ≥ 0

(−1)𝑚 (
(𝑙 − |𝑚|)!)

(𝑙 + |𝑚|)!
)𝑃𝑙,|𝑚|(𝜇)  𝑚 < 0

}
 
 

 
 

The scattering source term change by replacing Eq. 

(16) 

𝑄𝑠(𝑟, 𝐸, 𝛺) = ∫ 𝑑𝐸′[∑𝜎𝑙𝑠(𝑟, 𝐸
′

𝑙

𝑙=0

∞

0

→ 𝐸) ∑ 𝜓𝑙.𝑚(𝑟, 𝐸
′)𝑌𝑙,𝑚(𝛺)

𝑙

𝑚=−𝑙

] 

𝑄𝑠(𝑟, 𝐸, 𝛺) = ∫ 𝑑𝐸′[∑𝜎𝑙𝑠(𝑟, 𝐸
′ → 𝐸){𝜓𝑙.0(𝑟, 𝐸

′)𝑌𝑙,0(𝛺)

𝑙

𝑙=0

∞

0

+ ∑(𝜓𝑙.𝑚(𝑟, 𝐸
′)𝑌𝑙,𝑚(𝛺)

𝑙

𝑚=1

+ 𝜓∗
𝑙.𝑚
(𝑟, 𝐸′)𝑌∗𝑙.𝑚(𝛺))}]

By putting real and imaginary part of each component 

then we can write, 

𝑄𝑠(𝑟, 𝐸, 𝛺) = ∫ 𝑑𝐸′[∑𝜎𝑙𝑠(𝑟, 𝐸
′ → 𝐸){𝜓𝑙.0(𝑟, 𝐸

′)𝑌𝑙,0(𝛺)

𝑙

𝑙=0

∞

0

+ 2∑(𝜓𝑙.𝑚(𝑅𝑒)(𝑟, 𝐸
′)𝑌𝑙,𝑚(𝑅𝑒)(𝛺)

𝑙

𝑚=1

+ 𝜓𝑙.𝑚(𝐼𝑚)(𝑟, 𝐸
′)𝑌𝑙.𝑚(𝐼𝑚)(𝛺))}]

More simplified, 
𝑄𝑠(𝑟, 𝐸, 𝛺) =

∫ 𝑑𝐸′[∑ 𝜎𝑙𝑠(𝑟, 𝐸
′ → 𝐸)∑ 𝑅𝑙,𝑚(𝛺)𝜓𝑙.𝑚(𝑟, 𝐸

′)𝑙
𝑚=−𝑙

𝑙
𝑙=0 ]

∞

0
(18) 

where, 
𝑅𝑙,𝑚(𝛺)

=

{
 
 
 

 
 
 
 
√
(2𝑙 + 1)

4𝜋
√2

(𝑙 − 𝑚)!

(𝑙 + 𝑚)!
𝑃𝑙,𝑚(𝜇) 𝑐𝑜𝑠(𝑚𝜑)            𝑚 > 0

√
(2𝑙 + 1)

4𝜋
𝑃𝑙(𝜇)                                                         𝑚 = 0

√
(2𝑙 + 1)

4𝜋
√2

(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
𝑃𝑙,|𝑚|(𝜇) 𝑠𝑖𝑛(|𝑚|𝜑)      𝑚 < 0

}
 
 
 
 

 
 
 
 

and the angular flux (PN flux) moment are defined by 

𝜙𝑙
𝑚(𝑟, 𝐸′) = ∫ 𝑑𝛺′𝑅𝑙,𝑚(𝛺

′)𝜓(𝑟, 𝐸′, 𝛺′)
4𝜋

0
                        (19) 

where 𝑅𝑙,𝑚(𝛺
′)  are the parts of the spherical

harmonics. 

3. Numerical Results

2D and 3D problem results will discuss at this section. 

All the analyses were done with MOC ray spacing 0.02 

cm, azimuthal angles 96, with 6 polar angles. In 3D 

problem, black boundary is used at top and bottom and 

all other cases reflective boundary is used. The mesh for 

each pin cell consists of 5 radial rings for the inner zone, 

3 radial rings for the outer zone and the axial mesh for 

the 3-D configuration consists of 144 plane (2.85 cm for 

fuel and 2.67 cm for reflector) as shown in Fig. 3. 
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3.1 Single Assembly 

Pressurized water reactor fuel assembly 

(Westinghouse and OPR-1000 designed) were selected 

to demonstrate performance of higher order scattering 

source consideration. The Westinghouse-designed (WH) 

assembly consist of 17x17 matrix fuel array with 264 

number of fuel rods, 24 guide and one instrument tubes 

as shown in Fig. 1(a). Fuel pin and assembly technical 

specification and reference solutions were taken from 

VERA core physics benchmark progression problem [3]. 

However, the assembly inter-gap is omitted. On the other 

hand, OPR-1000 assembly have 16x16 matrix with 236 

number of fuel rods, 4 guide thimbles and one instrument 

tube as shown in Fig. 1(b). Both FA’s have identical 

material compositions for fuel, cladding and moderator, 

i.e., 3.1 wt% UO2 fuel, 0.743 g/cc moderator with 1300

ppm of boron, and Zircaloy-4 cladding. The two FAs are 

at 600 K for all regions. 

Fig 1: Fuel Assembly (a) Westinghouse designed (unrodded) 

and (b) OPR-1000 designed (rodded). 

Table 1 show the results of the unrodded and rodded 

FAs analyses. In the results, P3 and transport corrected 

P0 shows a similar level of accuracy in the rodded and 

unrodded analyses. On the other hand, P0 eigenvalue 

difference about 250 pcm in unrodded and more than 

2000 pcm in rodded case. Overall eigenvalue difference 

within 50 pcm in both rodded and unrodded case at order 

3 and below 0.5 percent maximum relative power. 

3.2 B&W Simple Experiments 

The Babcock & Wilcox (B&W) [5] Series 1484 core I 

and II experiments consist of two very simple cores (one 

circular and one square), as shown in Fig. 2. These cores 

contain no heterogeneities (e.g., water holes, absorber 

holes, enrichment splits), and since the cores differ in 

size and shape, they present a wide range of radial 

leakage core I consists of 458 identical fuel pins (2.459 

wt%) arranged in a circular shape, which has been 

symmetrized for our purposes. This core is in a very 

high-leakage configuration. Core II consists of 1764 

identical fuel pins (2.459 wt%) arranged in a square 

shape. This core is in a relatively low-leakage 

configuration. The two cores together core I and core II 

provide a very good indication of the accuracy with 

which radial leakage and anisotropic scattering. 

Fig. 2: B&W Series 1484 (simple critical): (a) core I and (b) 

core II. 

Tables 2 & 3 show the results of B&W series 1484 

core I & II. Core I & II shows more than 11000 pcm and 

5000 pcm difference at P0. On the other hand, k-effective 

compensate from 11000 pcm to 16 pcm and 5000 to 145 

pcm at order P3. Maximum relative pin power 

differences were 1.5% and 0.99%  at core I and II 

respectively and average percent RMS error were 0.49 

and 0.18 respectively. However, maximum relative error 

increase from 1.5% to 10.73% and 0.99% to 22.78% at 

P0. 

3.3 3D Single Assembly 

In 3D case, similar specification fuel assembly was 

used which was used in section 3.1. the total height of the 

assembly was 407.84 cm included one assembly height 

21.42 cm top and bottom water reflector as shown in Fig. 

3. Black boundary condition is used at top and bottom

and reflective all other sides. Only unrodded problems 

were analyses.    

 

 

Fig 3: 3D Fuel Assembly and radial mesh (single pin). 

Table 4 demonstrate the 3D single assembly results. 

The k-effective difference in both P0 and P3 are similar 

but in term of pin power difference P0 results is far away 

from reference. However, in P3, maximum relative pin 

power differences are 0.14% and -0.24% at WH and 

OPR-1000 design assembly respectively. 

(a) (b) 

(b) (a) 

21.42 cm (water)

365.00 cm 

21.42 cm (water) 

Fuel 
Clad 

gap water 
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Table 1: Fuel assembly results 

PN 

order 
k-effective diff.a 

(pcm) 
Pin Power diff.b 

PW.(%) Max.(%) 
WH (unrodded) 

Ref.c 1.18035 ±3d ±0.04d ±0.06d 
P3 1.18006 -29 0.16 0.45 

P1 1.17940 -95 1.92 3.32 

P0 1.17814 -221 2.76 4.85 

P0_tre 1.18047 12 0.07 0.19 

WH (rodded) 
Ref. 0.78395 ±3 ±0.05 ±0.06 
P3 0.78425 -30 0.10 0.22 

P1 0.78121 -273 1.01 3.19 

P0 0.80548 -2153 2.76 5.10 

P0_tr 0.78495 100 0.68 1.40 

OPR-1000 (unrodded) 
Ref. 1.17471 ±3 ±0.04 ±0.05 
P3 1.17456 -15 0.12 -0.29 

P1 1.17443 -28 0.16 -0.38 

P0 1.17103 -368 0.76 1.77 

P0_tr 1.17439 -32 0.09 -0.20 

OPR-1000 (rodded) 
Ref. 0.94874 ±3 ±0.05 ±0.05 
P3 0.94823 -51 0.15 -0.42 

P1 0.94607 -267 0.17 -0.50 

P0 0.97182 2307 1.22 2.21 

P0_tr 0.95042 167 0.15 -0.34 
a difference = (keff - keff

ref.)x1005 
bdifference of pin power: PW.: power weight difference;              

Max.: the maximum difference. 
c Monte Carlo code MCS [4] 
dRMS and the maximum pin power statistical errors of MCS results. 
eP0_tr: transport corrected P0 

Table 2: Summary results of 2D B&W 1484 core I 

PN 

order 
k-effective diff.b 

(pcm) 
Pin Power diff.c 

PW.(%) Max.(%) 
Ref. 1.01560 ±3 ±0.03 ±0.05 
P3 1.01576 16 0.49 1.50 

P1 1.01516 -44 1.65 2.91 

P0 1.11986 10426 3.87 10.73 

P0_tr 1.01713 153 0.71 1.23 

Table 3: Summary results of 2D B&W 1484 core II 

PN 

order 
k-effective diff.b 

(pcm) 
Pin Power diff.c 

PW.(%) Max.(%) 
Ref. 1.01592 ±3 ±0.09 ±0.19 
P3 1.01714 122 0.16 0.99 

P1 1.01876 284 0.60 4.02 

P0 1.05776 4184 3.20 22.78 

P0_tr 1.01582 -10 0.33 1.75 

Table 4: Summary results of 3D fuel assembly 

PN 

order 
k-effective diff.b 

(pcm) 
Pin Power diff.c 

PW.(%) Max.(%) 
WH (unrodded) 

Ref. 1.17589 ±3 ±0.05 ±0.06 
P3 1.17672 83 0.09 0.14 

P1 1.17719 130 0.14 0.21 

P0 1.17731 142 0.36 0.89 

P0_tr 1.17558 -31 0.14 0.23 

OPR-1000 (unrodded) 
Ref. 1.17030 ±3 ±0.04 ±0.05 
P3 1.18006 94 0.10 -0.24 

P1 1.17221 191 0.12 -0.34 

P0 1.16838 -192 0.74 1.66 

P0_tr 1.16978 -52 0.09 0.23 

3. Conclusions

This paper has presented a general description of the 

PN theory behind the STREAM lattice physics code. A 

significant portion of the paper has been devoted to 

describing the way in which the MOC has been applied 

in STREAM. Calculations were performed with the 

ENDF/B-VII.1 data library and demonstrate excellent 

agreement with no obvious significant bias versus 

control rods and geometry. Although validation was 

done up to PN order 3. Significant k-effective differences 

were found between P0 and P3 except 3D single 

assembly case. But pin power distribution has a good 

agreement at P3. Finally, it is proved that using higher 

order might generate better accurate results.   
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