Transactions of the Korean Nuclear Society Autumn Meeting

Changwon, Korea, October 22-23, 2020

Preliminary Core Design for Thorium Based Gas Cooled Reactor Seung Uk Yoo*, Chang Je Park

^aNuclear Engineering Dept., Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747, Korea

*Corresponding author: yooswok@sju.ac.kr

Introduction 1.

- Within the development of nuclear reactors, engineers made a lot of attempts to increase the efficiency of the energies to generate electricity, and to decrease the amount of high-level radioactive waste from the nuclear reactors.
- The main purpose of this paper is to build long life thermal reactor using thorium, and make thorium fueled fast reactor which does not change the geometry a lot from the reference model of core design.
- The core design and various calculations was performed with MCNP 6.2, and visualized with Visual Editor.

Analysis

TRU Compositions in Fast Reactor

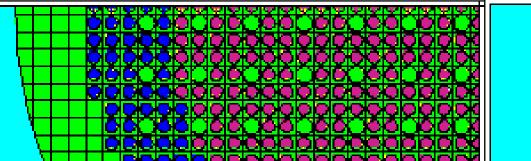
TRU Nuclides	wt%
Np-237	1.7152
Pu-238	3.0176
Pu-239	50.0963
Pu-240	31.9379
Pu-241	3.8629
Pu-242	3.1988
Am-241	3.6076
Am-242	0.2234
Am-243	1.1902
Cm-242	0.0031
Cm-243	0.0103
Cm-244	0.7526
Cm-245	0.2440
Cm-246	0.1400

Design parameters of Gas Cooled Reactors

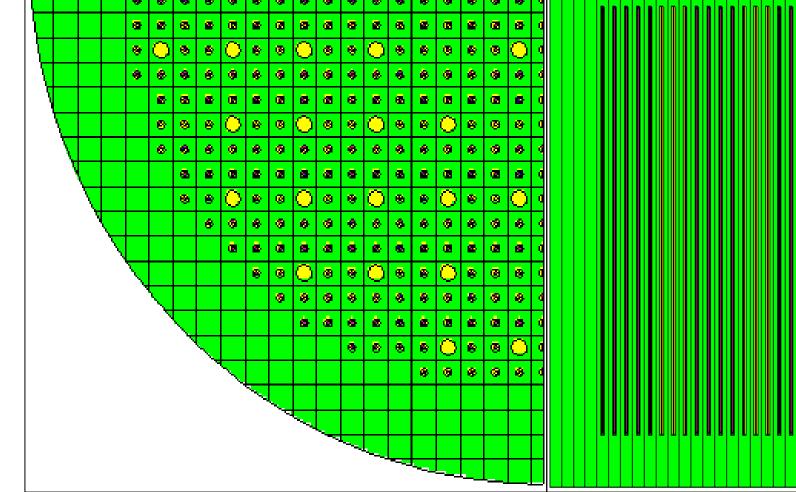
Design Parameters	Gas Cooled Thermal Reactor	Gas Cooled Fast Reactor	Conditions	Values
Fuel Composition	(Th+U233) Al	(Th+U233 / TRU)A1	* ²³³ U Enrichment (wt%)	1 / 1.5 / 2 / 3 / 4 / 5
Coolant Material	CO_2 / He	He		nent of fissile materials has Material
Clad Material	Mg+A1	Mg+A1	been assumed as $\frac{Fissile}{232}Th+Fiss$	sile Material
Reflector Material	Graphite	None	Various Conditio	ns for Fast Reactors
Core Diameter	8.6 m	2.5 m	Conditions	Values
Core Height	7.35 m	1.47 m	Fuel Rod Radius (cm)	1.45 / 1.20 / 1.00 / 0.80 / 0.60 / 0.35
Power (MWth)	6.25	6.25*	Cladding Thickness (cm)	0.05 / 0.05/ 0.05 / 0.03 / 0.01
Mean Inlet Gas Temperature	140 °C	400 °C	Fuel Pitch Size (cm)	/ 0.01 20 / 15 / 10 / 9 / 8 / 7 / 6 / 5 /
Mean Outlet Gas Temperature	336 °C	850 °C	- *Core diameter and heigh	$\frac{4/3/2/1}{1}$
*Power is fixed as thermal reactor	r due to comparison		Core diameter and heigh	t is fixed for comparison

*Power is fixed as thermal reactor due to comparison

Result


Quarter Core design of Gas Cooled Thermal Reactor

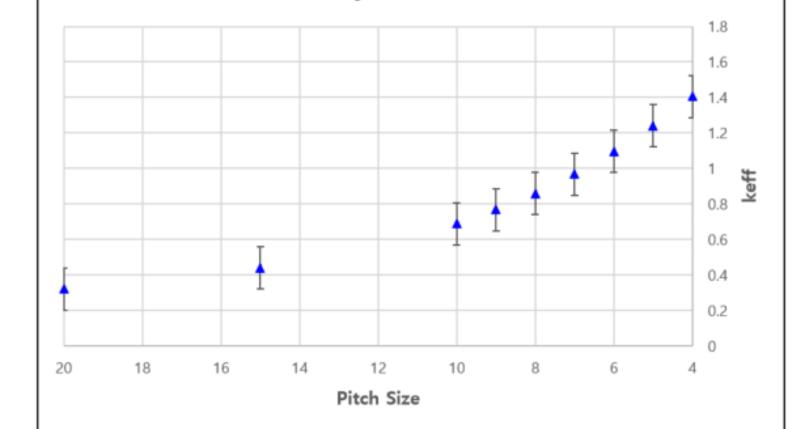
																		_							
																								П	F
		0	0	8		8	0	0	۲		8	•	8	0	8	8	8	Q		Π					
	A	a.	a	a.	a	۵	a	a	æ	a	a.	a	a.	a	a	.0	a	6							


Criticality Results with Various Pitch Size for Fast Reactor

Criticality With Fuel Pitch

• Optimized Quarter Core design of Gas Cooled Fast Reactor

Fissile Material Conditions in Thermal Reactor



Criticality Results with Various Fuel Compositions

U-233 Enrichment	Criticality	std
1 wt%	0.9107	0.0056
1.5 wt%	1.1350	0.0088
2 wt%	1.2594	0.0089
3 wt%	1.4476	0.0059
4 wt%	1.5404	0.0080
5 wt%	1.6564	0.0084

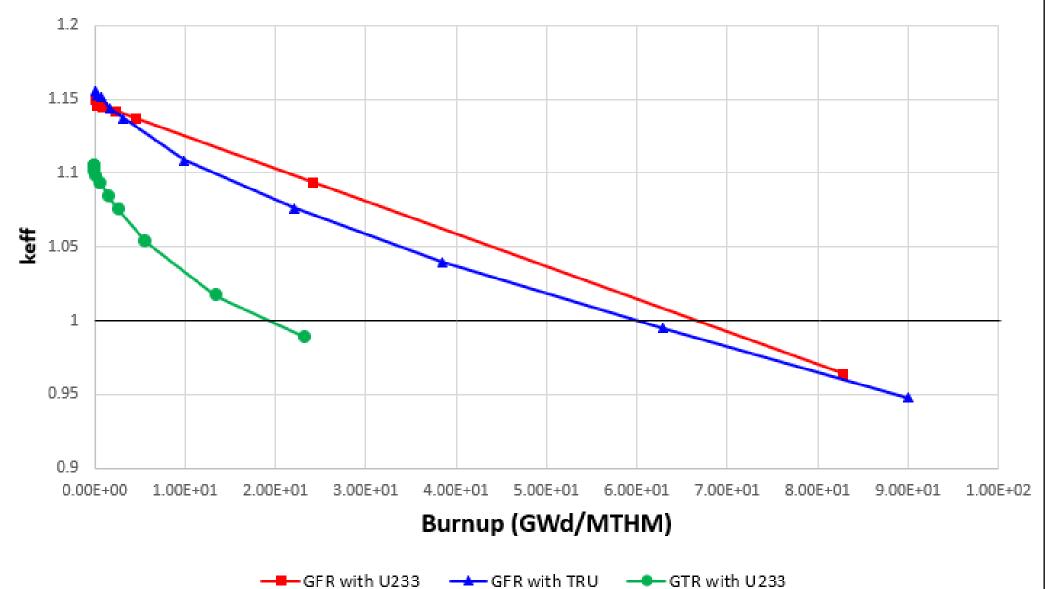
Criticality Results with Control Rods

Conditions	Criticality	std				
1.5 wt% No Control Rod	1.1350	0.0088				

*Only the fuel pitch condition has been changed.

Criticality Results with Various Design Parameters

	Conditions				
Fuel Rod Radius (cm)	Cladding Thickness (cm)	Fuel Ptich Size (cm)	- keff	std	
1.45	0.05	4	1.40573	0.00075	
1.20	0.05	4	1.14819	0.00058	
1.00	0.05	3	1.10758	0.00059	
0.80	0.03	2	1.08504	0.00067	
0.60	0.01	2	0.65692	0.00046	
0.35	0.01	1	0.44747	0.00031	


	Conditions		1 00			
Fuel Rod Radius (cm)	Core Diameter (cm)	Core Height (cm)	keff	std		
1.45	172	147.198	1.14693	0.00227		
1.20	172	147.198	1.03951	0.00202		
1.00	129	110.3985	0.99120	0.00068		
0.80	86	73.599	0.96157	0.00065		
0.60	86	73.599	0.58131	0.00037		
0.35	43	36.7995	0.38238	0.00031		
*Calculations have been performed with Fast Reactor						

Cr	iticality Res	sults with V	various TR	U wt%	Critical	lity Results	s with *CR
						U	
	TRU wt%	keff	std		TRU wt%	keff	std
	TRU wt%				[
		keff	std		TRU wt%	keff	std
	20	keff 1.07647	std 0.00057		TRU wt%	keff 0.91655	std 0.00048
	20 21	keff 1.07647 1.10284	std 0.00057 0.00057		TRU wt% 20 21	keff 0.91655 0.94852	std 0.00048 0.00048
	20 21 22	keff 1.07647 1.10284 1.13079	std 0.00057 0.00057 0.00058		TRU wt% 20 21 22	keff 0.91655 0.94852 0.97969	std 0.00048 0.00048 0.00057

*CR = Control Rod

• Depletion Result Comparison with Various Types of Reactors

Depletion Result Comparison with Various Types of Reactors

1.5 wt% All Control Rods In	0.9450	0.012
2.0 wt% No Control Rod	1.2594	0.0089
2.0 wt% All Control Rods In	1.0652	0.0079

*Calculations have been performed with Thermal Reactor

Conclusion

- The gas-cooled reactors have been designed with two types, fast and thermal.
- The gas-cooled thermal reactor had shown burnup with about 20 GWd/MTHM which is similar to the burnup of one cycle in APR-1400.
- The gas-cooled fast reactor have been designed with ²³³U and TRU isotopes for fissile materials, and the burnup had shown about 65 and 60 GWd/MTHM for ²³³U and TRU isotopes.
- This thesis is the preliminary study about developing gas-cooled fast reactor with ²³²Th, in this study it had shown the probability about design of gas-cooled fast reactor with TRU isotopes for fissile materials.
- In the future, it is expected to design the gas-cooled fast reactor which utilize TRU isotopes for fissile materials with ²³²Th material.