APR1400 MFLB Safety Analysis using MARS-KS CTF Subchannel Analysis Module and Parallelization Challenges

Dec 17, 2019

(en²t)

N.H. Hoang, Y.S. Kim, Y.K. Kwack, S.H. Bae, S.K. Sim

hien@en2t.com

(주)이엔이티

Environment & Energy Technology, Inc.

Contents

- I. Introduction
- II. APR1400 MFLB Analysis Modeling
- III. Results & Discussion
- **IV.** Conclusions & Remarks

Introduction

- Multi-dimensional, multi-physical reactor thermal-hydraulic phenomena that tightly couple with other physics (*e.g., neutronics, fuel perform., chemistry*)
 - Flow through the subchannels in fuel assemblies and downcomer
 - Core coolability ~ flow blockage, spacer grids
 - Fuel deformation, relocation, and rupture following LOCA

Needs for highly-fidelity analysis methods for the realistic simulation of PWRs

MARS-KS with CTF 3D subchannel analysis module

- Implicit pressure matrix coupling
- Coupling of point kinetics and 1D heat structure
- Parallel processing capability, towards the full core simulation
- ✓ Transient DNBR prediction
- Optimized storage, user-friendliness

Study objectives

- ✓ MARS-KS(CTF) analysis for APR1400 MFLB
 - Lumped core model
 - Transient DNBR prediction
- ✓ Full-core analysis challenges
 - Parallel processing
 - Applications to SMRs and MRs

CASL 3x3 Hot Full Power Problem

MARS-KS(CTF)
Parallelization Simulation

Subject case

 The limiting MFLB with the break size of 0.0372 m² downstream of the check valves with LOOP assumption

CL

- Reversed flow from the nearest SG, resulting in rapid RCS heat-up and pressurization
- MARS-KS(CTF) 3D Core Model
 - 32 lumped hydrodynamic channels
 - 7 lumped fuel rods

Parameter	FSAR [3]	MARS/CTF
Thermal power, MWt	4062.66	4062.66
Core inlet temp. (K)	569.25	569.11
Core outlet temp. (K)	-	604.18
Core inlet flow (kg/s)	19,344	19,344
PRZ pressure (MPa)	15.65	15.65
PRZ volume (m ³)	39.91	39.91
Main steam flow (kg/s)	-	1143
SG pressure (MPa)	-	7.7
SG water level (m)	-	12.53
SG water inventory (kg)	97,046	97,046
CEA worth at trip (% $\Delta \rho$)	-8.0	-8.0
MTC (10 ⁻⁴ %Δρ/°C)	0	0
Doppler reactivity	Least negative	Least negative

Initial and boundary conditions

3D lumped APR1400 core model

APR1400 MFLB Analysis Modeling

6

Sequence of Events

- MARS-KS shows events with some delays in comparison with those of APR1400 FSAR (CESEC-III code).
- Meanwhile, AFWS starts earlier for MARS-KS => SG level faster decreases
- FSAR: MSSVs still open after 401.4s
- MARS-KS: Two more times short opening of POSRVs

FSAR	MARS-KS	Events	Setpoints
0.0	0.0	Break initiates	0.0372 m2
26.38	32.15	High PRZ pressure signal	16.98 Mpa
27.13	32.90	Reactor trip; RCP trip Turbine valve closes	0.75s delay
-	33.00	RCP coastdown	0.1s delay
-	33.75	Rod drops	0.85s delay
27.37	35.00	POSRV opens	17.37 MPa
29.95	-	MSSVs open (unaff. SG)	8.59 MPa
38.0	37.00	POSRV closes	15.62 MPa
29.43	39.00	Maximum RCS pressure (PORSV quickly open/close)	17.73 MPa / 19.28 MPa
54.64	42.15	AFWS actuation signal	5% SG Level
116.1	103.6	AFW injection (unaff. SG)	41.01 kg/s
159.1	144.6	MSIVs closing signal (P _{SG})	5.17 Mpa
165.6	151.0	MSIVs close	
401.4	422.0	MSSVs open	
-	431.0	MSSVs close	8.59 MPa
457.3	466.0	POSRV opens	
459.7	468.0	POSRV closes	
-	666.0	PORSVs open/close	
1800	1800	END	

Results and Discussion

......

http://www.en2t.com

Results and Discussion

Results and Discussion

APR1400 MDNBR limit of 1.29

✓ MARS-KS(CTF)

- MNDBR = 1.32 at 37 seconds
- 3D CTF subchannel module
- Groenevel look-up table for CHF

APR1400 FSAR

- Almost the same
- KCE-1 CHF correlation
- CETOP-D code: DNBR calculation
 - External link

20

30

Time (s)

10

1.0

0.5

0.0

0

http://www.en2t.com

50

40

10

Parallel processing for full core modelling

- A large number of subchannels, gaps, and rods (~ million-cells mesh)
- A realistic and high-resolution of core thermal-hydraulic behaviors
- Benefit for SMRs and MRs: SMART, Badi-S
- Expensive computational cost (impossible with serial calculation)

Challenges

- 1) Reactor vessel meshing
 - Extend core region to whole RV (lower & upper plenums, DC)

2) Use of 3D reactor kinetics

- Point kinetics give the same power distribution for every time step
- 3) Insufficiency of 3D input data

MARS-KS Parallel processing for CASL 3x3 HFP 64 channels, 108 gaps, 45 rods, 3136 cells MARS-KS(CTF): 46.72 secs / 1 sec transient calc. CTF: 44.36 secs / 1 sec transient calc.

MARS-KS calculation results for APR1400 MFLB are comparable with the APR1400 FSAR

- Most T/H parameters are well matched
- However, considerable differences were observed for primary pressure, RCS temperature, and SG collapsed level
- Parallelization of MARS-KS is necessary for full core safety analysis, but faces some challenges
 - Generate a mesh for whole reactor vessel
 - Core power simulation
 - Need specific 3D input data

Applications for MARS-KS Parallel Processing with CTF 3D Subchannel Module

- Multi-Scale, Multi-Physics simulation of the Reactor : Full Core Safety Analysis
- Transient DNBR Evaluation for Full Core Safety Analysis
- Developments of Real-time Safety, Accident Prevention & Mitigation Management Platform
- Development of real-time Self-driving platform for SMRs and MRs

Acknowledgement

This study has been funded and supported by Korea Foundation of Nuclear Safety (KoFoNS) and Korea Nuclear Safety and Security Commission (NSSC)