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1. Introduction

Due to flexibility of the Monte Carlo neutron transport 

analysis for cross section and geometry treatment, it has 

been in the spotlight recently with the development of 

computer science [1-4]. The transient behavior and 

safety analysis of nuclear system requires to solve the 

space-time dependent neutron transport equation. MCNP 

has simulated the time-dependent behavior of a nuclear 

system, based on the Monte Carlo neutron transport 

method, using the direct simulation method (DSM) [5]. 

In the development version of SERPENT 2 code, a time-

dependent simulation mode has also been implemented. 

In this mode, sequential population control mechanism 

has been proposed for modeling of prompt super-critical 

systems [6]. For super-critical or sub-critical systems, the 

neutron population increases or decreases over a period 

of time. The neutron population is uniformly combed to 

return it to the neutron population started with at the 

beginning of time boundary [7]. 

In the Monte Carlo (MC) eigenvalue calculations, 

various schemes have been devised to estimate real 

variance [8-11]. However, in the time-dependent Monte 

Carlo (TDMC) calculations, the real variance estimation 

method is not studied sufficiently. The main purpose of 

this paper is to estimate the real variance of the tally in 

TDMC calculations using uncertainty propagation model. 

In this paper, uncertainty of the fractional core fission 

rate is quantified. The effectiveness is examined for 

C5G7-TD benchmark which specifies a series of space-

time neutron kinetics problems without consideration of 

any feedback effects [12]. 

In non-critical system, the neutron population can 

increase or decrease exponentially. To prevent this 

fluctuation, the combing technique is usually applied to 

TDMC calculations [13]. Through the combing process, 

the neutron population is regulated to a user-defined 

value and the combed neutrons have the same weight.

2. Time-Dependent Monte Carlo Scheme

In this study, the conventional TDMC method is 

implemented, which can also be called as neutron 

history-based method (NHBM). In TDMC calculation, 

the tally mean and the variance are calculated from each 

time-step. From the very beginning to the end of each 

time boundary, all the neutron histories are tracked with 

creating branches by fission reactions instead of new 

neutron histories. Figure 1 shows the general scheme for 

performing TDMC calculation. Before the simulation for 

𝑖𝑡ℎ time-step, the system properties, such as material and

geometry, are read. After a single neutron is simulated, 

the branches from this neutron due to fission and splitting 

are simulated directly. When a neutron crosses the time 

boundary, it is stopped and stored in the bank for the next 

time-step. If all the neutron histories are simulated in this 

manner, the tally is estimated and the simulation for the 

time-step is terminated. 

Fig. 1. Scheme for Performing Time-Dependent Monte Carlo 

Calculation. 

There is no time information with the neutrons 

simulated in the MC eigenvalue calculations. On the 

other hand, the time information must be stored to 

describe the time-dependent behavior of neutrons. 

Therefore, the time is discretized into several time-steps 

and the time-step index 𝑖  is introduced in the TDMC 

algorithm. 

2.1. Combing Algorithm 

The neutron population and weights are controlled by 

combing algorithm. The combed weights of the neutron 

at the beginning of every time-steps are normalized to 

unity by introducing scale factor. Physically, the scale 

factor is the expected value of the weight of neutron 

history at the beginning of 𝑚𝑡ℎ time-step generated by a

neutron history at the beginning of the first time-step. 

Mathematically, the scale factor at 𝑚𝑡ℎ time-step can be

written as; 



1

1 2 1

1

m

m m i

i

F f f f f
−

−

=

= =  (1) 

where 𝑓𝑖 is defined by;
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where 𝑁 and 𝑤𝑖
0 are the number of neutron histories

and the initial weight of neutron histories at the 

beginning of the 𝑖𝑡ℎ  time-step, respectively. 𝑤𝑖,𝑘
𝑆  is

the survival weight from 𝑘𝑡ℎ history at 𝑖𝑡ℎ  time-step.

Substituting the value of Eq. (2) into Eq. (1), the scale 

factor can be rewritten as; 
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3. Real Variance Estimation for

Time-Dependent Tally 

The statistical uncertainty of each time-step is 

accumulated with the uncertainty propagating through 

the calculation from the preceding time-step. Without 

considering the uncertainty propagation, the uncertainty 

in TDMC simulations can be underpredicted, which 

means the existence of variance bias in tally [14]. In this 

study, with the help of uncertainty propagation model, 

diagnostic method for real variance of time-dependent 

tally is derived. 

3.1. Time-Dependent Tally Estimator 

An integral form of the time-dependent Boltzmann 

transport equation for the collision densityΨ(𝐏), where 

𝐏  denotes the state vector of a neutron in the seven-

dimensional phase space (𝒓, 𝐸, 𝛀̂, 𝑡) can be written as; 
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where Ψ(𝐏)  and 𝐾(𝐏′ → 𝐏)  is collision density and 

transport kernel, respectively. The transport kernel is; 

( ) ( )

( )

' ', '; ', ' ,

, , ; '

K C t E E

T E t

→ = →

 →

P P r Ω Ω

Ω r r (5) 

where 𝐶(𝒓′, 𝑡′; 𝐸′, 𝛀̂′ → 𝐸, 𝛀̂)  is collision kernel and

𝑇(𝐸, 𝛀̂, 𝑡; 𝒓′ → 𝒓) is transition kernel [15]. 

After reviewing Neumann series solution, the desired 

tally at the end of 𝑚𝑡ℎ time-step can be calculated as;
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where 𝑤𝑚,𝑘
𝑗

and 𝑞𝑚,𝑘
𝑗

 is the weight of neutron and the 

tally response for the 𝑗𝑡ℎ collision of 𝑘𝑡ℎ history at 𝑚𝑡ℎ

time-step. The scale factor is global parameter which 

only depend on time-step index 𝑚 . Therefore, the 

variance of the tally 𝑄𝑚 can be written;
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where 𝑄𝑚̃ is defined by;
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Because the second-order derivative of scale factor 

comes out to be zero, using Taylor expansion of Eq. (1), 

the total derivative term of scale factor can be written as; 
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By definition, the variance of scale factor is; 

  ( )
22

m mF E dF  =
 

 (10) 

Substituting the value of derivative in Eq. (9) into Eq. 

(10), the variance of the scale factor can be rewritten as; 
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The relative partial derivative of scale factor is; 
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Combining Eq. (11) and Eq. (12), the relative variance 

of the scale factor can be written as; 
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By substituting the value of Eq. (2), the inter-step 

covariance cov[𝑓𝑖, 𝑓𝑗] can be written as;
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By substituting the value of the inter-step covariance 

in Eq. (14) into Eq. (13), we can obtain; 
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As a result of combing process, one neutron history is 

expected to generate one neutron history at the next time-

step. One can see that the probability the 𝑘𝑡ℎ  neutron

history at 𝑖𝑡ℎ  time-step generates 𝑘′𝑡ℎ  history at the

next time-step depends only on the difference between 

history index. Thus, we can introduce the real lag 𝑙 
covariance: 
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For the lag 𝑙  covariance, we use the following 

estimator 𝐶𝑠[𝑙]:
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where 𝑤𝑖
𝑠 is the average survival neutron weight at 𝑖𝑡ℎ

time-step, which is calculated by; 
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If we assume that 𝐶𝑆[𝑙] is 𝐶𝑅[𝑙], inter-step covariance

can be estimated by; 

  ( )  

2 0 0

1

1

1
cov ,

2

i j

i j

N

S S

l

f f
N w w

NC l N l C l
−

=

  = 

 
 + − 
 

 (19) 

By substituting Eq. (19) into Eq. (13), the final 

estimator for real variance of scale factor can be written 

as; 
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4. Numerical Results and Analysis

The reference value of real variance of fractional core 

fission rate is calculated by repeating 500 TDMC runs 

with different random number sequences. The mean 

value of the variance estimates from every single run is 

treated as the numerical result of real variance estimate. 

The individual TDMC calculation is performed for 

10,000 neutron histories and 100 time-steps with time-

step size 0.01 msec. 

4.1. C5G7-TD Phase I – TD0-5 

In this problem, the postulated transient event is 

approximated in the 2-D calculations as a step change of 

the material composition, i.e., an instantaneous 

replacement of the moderator-filled guide tube material 

by control rod material. Eq. (21) gives mathematical 

expression of the cross section mixing. 
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Figure 2 shows the real and estimated relative standard 

deviation (RSD) of fractional core fission rate. Real RSD 

is calculated from Eq. (7). One can see that new method 

predict more accurately the real RSD of fractional core 

fission rate tally. Figure 3 shows the real to apparent 

standard deviation (SD) of fractional core fission rate. 

Fig. 2. Comparison of Estimated RSD’s with Real RSD for 

Fractional Core Fission Rate Tally in C5G7-TD Phase I – 

TD0-5 

 

Fig. 3. Comparison of Estimated Real to Apparent SD for 

Fractional Core Fission Rate Tally in C5G7-TD Phase I – 

TD0-5 

4.2. C5G7-TD Phase I – TD2-5 

In this problem, the postulated transient event is 

approximated in the 2-D calculations as a ramp change 

of the material composition, i.e., a linear replacement of 

the moderator-filled guide tube material by control rod 

material. Eq. (22) gives mathematical expression of the 

cross section mixing. 
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The real SD is estimated in the same manner with 

Problem 1. Figure 4 and 5 shows the RSD and real to 

apparent SD of this problem. 

Fig. 4. Comparison of Estimated SD’s with Real SD for 

Fractional Core Fission Rate Tally in C5G7-TD Phase I – 

TD2-5 

Fig. 5. Comparison of Estimated Real to Apparent SD for 

Fractional Core Fission Rate Tally in C5G7-TD Phase I – 

TD2-5 

In Figure 2 and 4, the error bar means the sample SD 

of estimated SD’s for fractional core fission rate from 

500 individual TDMC run. 

5. Conclusions

In this paper, a combing technique to control the 

neutron population for non-critical systems is 

implemented. The desired tally level is represented by 

introduction of scale factor. In TDMC calculations with 

combing technique, the uncertainty propagation of tally 

is shown to be driven by the uncertainty propagation of 

scale factor. Two test problem, 2-D heterogeneous 

transient system, are demonstrated for verification of 

uncertainty propagation in fractional core fission rate 

tally. In first case, the material composition changes 

suddenly and there is no more change. On the other hand, 

in second case, the material composition changes during 

simulation. The new method predicts the real SD well by 

comparing it to the existing estimate for both test 

problem. 
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