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1. Introduction

Historically, a great deal of effort has been put into 
doing core analysis by solving transport or diffusion 
equations. Recently, new approaches that can replace 
the existing core analysis methods [1][2] have been 
actively tried, exploiting the evolution of researches on 
artificial intelligence and neural networks [3][4]. In the 
previous study, a core analysis study through CNN 
model was performed using learning data in the feasible 
areas of the APR1400 and OPR1000 core, and thus, 
excellent results were obtained. Based on this, a study 
on the analysis of the SMART core, a small modular 
reactor, was performed in this paper. In order to 
perform a more general type of core analysis, the 
feasible and un-feasible training data were both used, 
and a series of sensitivity calculation was performed to 
obtain optimized CNN model for the SMART core. 

In this paper, the configurations of the CNN model 
applied for the 2D core analysis of the SMART core 
and its results are presented, including the results of 
sensitivity analysis to optimize the model parameters. 

2. Method

CNN is well known for its efficiency in image 
processing of photographic data. Specifically, CNN has 
the following differences compared to the existing 
neural networks.  

Ÿ  Maintain the shape of input/output data of each layer 
Ÿ  Effective recognition of features of adjacent images 

while maintaining spatial information of images 
Ÿ  Extracting and learning features of images with 

multiple filters 
Ÿ  Pooling layer that collects and enhances the features 

of the extracted image 

So, it is suitable to accept the input of the shape of the 
core as shown in the Figure 1. 

Fig. 1. SMART core schematic geometry 

It is noted that the CNN model was developed by 
using Keras and Tensorflow module included in Python. 

2.1. CNN model 

The conventional nodal method calculates assembly 
power with four surrounding surface flux. To reflect on 
this fact, CNN method calculates its assembly power 
with four surrounding assembly features. Additionally 
instead of using a combination of k-infinity (k-inf) and 
specific macroscopic cross-sections, 7 types of 
macroscopic cross-sections (XS) (fast/thermal nu-
fission XS, fast/thermal diffusion coefficients, 
fast/thermal absorption XS, XS and fast to thermal 
scattering XS) that are used to calculate core peaking 
factor. The reason for this is that neutron leakage is 
different for each position but k-inf is made without 
considering the leakage. Therefore, in order to predict 
the peaking factor with high accuracy, it is better to 
consider all 7 XSs that can consider leakage. Figure 2 
shows the CNN model used for a core analysis. 

Fig. 2. CNN model for a core analysis 

There were 7 layers for 7 XS inputs and different 
convolutional layers, pooling layers and fully connected 
layers to analyze the core parameter. In this model, an 
optimized model is found by adjusting the number of 
layers, the number of channels included in the layer, and 
the size of the filter used in the layer etc. 

2.2. Sensitivity Study for an optimized CNN model 

The sensitivity study was performed by adjusting the 
parameters used in the above model and comparing the 
loss value of the trained data. The changed parameters 
were the number of channels, the size of filter, the 
number of convolutional layer (CL), the number and 
size of fully connected layer (FCL). The calculation was 
performed by changing each parameter independently. 



Typically, with neural networks, we seek to minimize 
the error. As such, the objective function is often 
referred to as a cost function or a loss function. In this 
result, the loss value was used. 

As a first step in order to see the effect of CNN, the 
FCL calculation result without CNN was compared with 
the most basic CNN result. The most basic CNN used 7 
filters, 1 convolutional layer, 1 fully connected layer 
and 175 size of fully connected layer. The comparison 
result is shown in Table I. 

Table I: Comparison Result of FCL and Basic CNN 
FCL Basic CNN 

Loss 0.12670 0.0700 

Secondly, CNN calculation was performed by 
changing each of the aforementioned parameters, and 
the results are shown in Tables II and III 

Table II: Sensitivity Study of Convolutional Layer 
# of Filters Loss # of CL Loss 

7 0.0700 1 - 
14 0.0340 2 0.0357 
21 0.0191 3 0.0315 
28 0.0154 4 0.0054 
35 0.0136 5 0.0053 

Table III: Sensitivity Study of Fully Connected Layer 
# of FCL Loss Size of FCL Loss 

1 - 175 - 
2 0.0347 350 0.0357 
3 0.0314 525 0.0233 
4 0.0272 700 0.0191 
5 0.0242 875 0.0174 

 From the results of sensitivity study, it was 
confirmed that the learning efficiency improved when 
the number increased with all the parameters. However, 
in the case of the number of layers, it can be seen that 
the level of improvement in learning efficiency is not 
high. This leads us to use an appropriate number of 
convolutional layers to improve learning efficiency. 
Specifically in the case of convolutional layer, the 3 and 
4 has shown drastic difference in learning efficiency. It 
showed that the combination of the size of fully 
connected layer and output of convolutional layer was 
also important. 

Table IV: Optimized CNN Model for Core Peaking 
Factor Analysis 

Layer Output Shape Param # 
Conv. Layer 1 (11,11,35) 4235 
Conv. Layer 2 (10,10,70) 7000 
Conv. Layer 3 (9,9,105) 8505 
Conv. Layer 4 (8,8,140) 8960 
Max Pooling (4,4,140) 2240 

Flatten (2240) 2240 
FC Layer 1 (4480) 4480 
FC Layer 2 (2240) 2240 

By combining the results of each sensitivity 
calculation and considering the computational burden, 
an optimized CNN model for the core peaking analysis 
was developed as shown in Table IV.  The optimized 
CNN model consists of 4 convolutional layers and 2 
fully connected layers. The number of filter was 
growing for each step. 

3. Result

An optimized CNN model was created and 
verification calculation was performed using the 
SMART core. The SMART core is a rectangular shaped 
one. It has two enrichment types of fuel assemblies. 
Low enriched fuels are at the core center positions while 
high enriched fuels are at the peripheral positions of the 
core. Both fuel assembly types have burnable absorbers 
(BAs) for reactivity balance and peaking control. For 
each fuel assembly, the fuel pins, BA pins and guide 
tubes were explicitly modeled. The whole data for 
SMART core was used at initial core condition (BOC). 
Training data was produced utilizing the core design 
code, MASTER[5] for input to CNN, and the details of 
process described below. 

3.1. Random LPs generation for Train and Verification 

The SMART core at BOC condition has 1/8th 
symmetry and is composed of a total of 5 fuel 
assemblies. The training data consisted of 1/8th 
symmetrical cores by randomly changing each nuclear 
fuel assembly at the location of the existing nuclear fuel 
assembly. With a such core configuration, the total 
number of loading patterns are about 50 million. For use 
as an input training data to CNN,  55,000 loading 
patterns (50,000 LPs for training data and 5,000 LPs for 
verification data) which was 0.1% of entire loading 
patterns, were produced using the MASTER. The 
assembly pin power peaking factor was used to train 
CNN and the range of peaking factor was traced. The 
distributions of LP and its peaking factor are shown in 
Figures 3 and 4. 

Ÿ Train Pin Power Peaking Factor Range - 1.37~7.42 
Ÿ Test Pin Power Peaking Factor Range – 1.41~7.11 

Fig. 3. Pin Power Peaking Factor Distribution (Train) 
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Fig. 4. Pin Power Peaking Factor Distribution (Test) 

3.2. CNN result verification 

CNN calculation was performed using 5000 data and 
verified by comparing it with the results of the 
MASTER. The difference and relative error of the pin 
power peaking factor were analyzed and displayed in 
Tables V and VI. The difference of the Table V was 
obtained by subtracting the MASTER result from the 
CNN result. The error of the Table VI was calculated 
through the absolute error. The computing time was 
about 0.2 seconds for each LP, which is about 3 times 
faster than the design code, MASTER. 

Table V: CNN vs MASTER difference 
Avg. Stdev.(σ) +2σ Excess -3σ Below 

-0.0081 0.0096 
2.54% 2.34% 

+3σ Excess -3σ Below 
0.26% 0.44% 

Table VI: CNN vs MASTER relative error 
Average 

Error 
Maximum 

Error 
1% Excess 

Error 
3% Excess 

Error 
0.43% 3.91% 6.40% 0.06% 

Looking into the differences in the object values, it is 
confirmed that the values mostly coincide at the second 
decimal points, which is good enough accuracy level for 
the peaking factors. Even in the case of the relative error, 
it is confirmed that most of the errors are within 3%.  

4. Summary and Conclusions

Convolutional neural networks (CNN) were applied 
in the prediction of the pin power peaking factor of 
SMART core at initial core condition. The results show 
that the pin power peaking factor can be accurately 
predicted with very high computational efficiency. The 
error in the maximum pin power peaking factor at the 
region of interest was less than 3%. The neural network 
model can greatly predict the core parameter with small 
computing time. Considering the computational 
accuracy and efficiency, the method shows a good 
potential application to LP search and core optimization 
area. Although it has strengths in predicting core 

parameter, there exists a certain limitation. In that, it is 
possible to predict only for the similar core shape and 
data with which it has been trained. Therefore, 
reinforcement learning and self-learning functions are 
required for new core shape and data. 
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