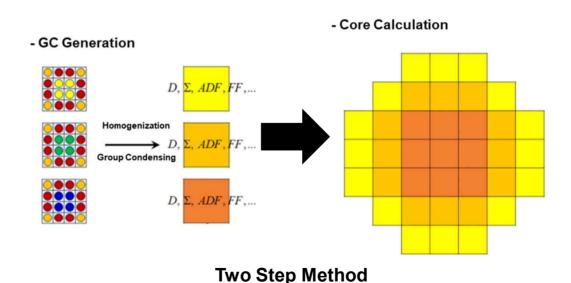
Transactions of the Korean Nuclear Society Autumn Meeting Online, December 16-18, 2020

Convolutional Neural Network Applied Core Peaking Factor Analysis and Sensitivity Study for SMART Core

2020. 12. 16-18

*Kibeom Park, Tongkyu Park, Sungkyun Zee(FNC) and Bon Seung Koo (KAERI)

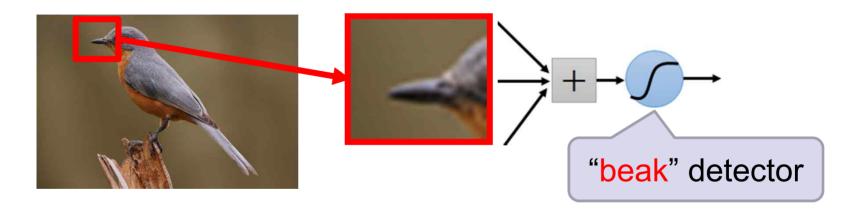


Contents

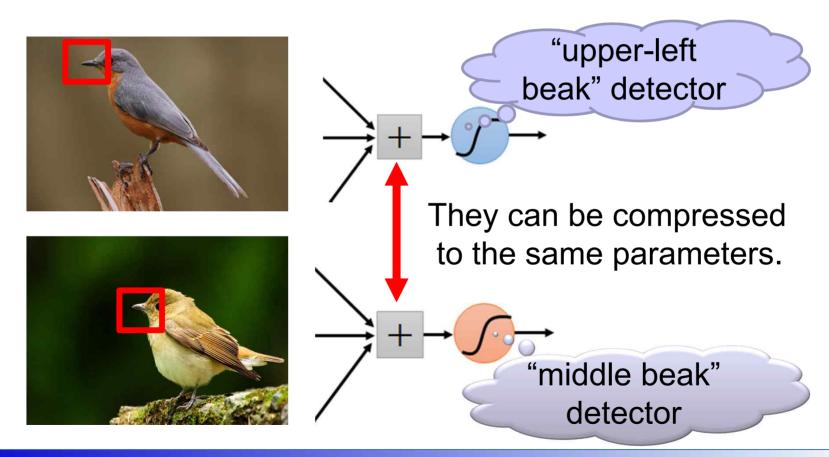
- 1 Introduction
- **2** Convolutional Neural Network Model
- 3 Verification Result for the SMART Core
- 4 Summary

1. Introduction

- The existing two step method was divided into Group Constant(GC) generation with lattice code and Core Calculation with nodal code.
- A great deal of effort has been put into doing core analysis by solving transport or diffusion equations.

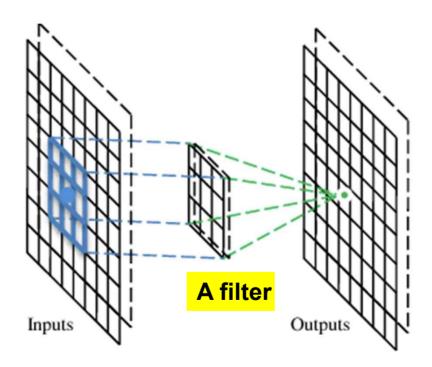

1. Introduction

- In recent years, research on core analysis using deep learning like a CNN has been actively conducted.
 - ► Y.D. Nam, J. Y. Lee, H. J. Shim, "Convolutional Neural Network for BOC 3D Pin Power Prediction"
 - ▶ J. Y. Lee, Y. D. Nam, H. G. Joo, "Convolutional Neural Network for Power Distribution Prediction in PWRs"

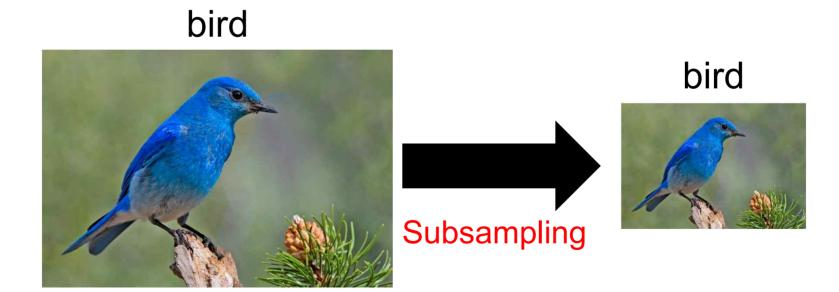

■ A study on the CNN core analysis of the SMART core, a small modular reactor, was performed and results will be shown in this presentation.

- **■** Consider learning an image
 - ► Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters



- Same pattern appears in different places: They can be compressed!
- Small detectors and each detector must move around.


■ Convolutional Layer

► A CNN is a neural network with some convolutional layers(and some other layers). A convolutional layer has a number of filters that does convolutional operation.

■ Pooling Layer

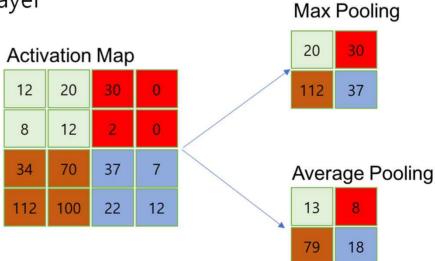
- ► Subsampling pixels will not change the object
- ► We can subsample the pixels to make image smaller fewer parameters to characterize the image

■ CNN(Convolution Neural Network) Model

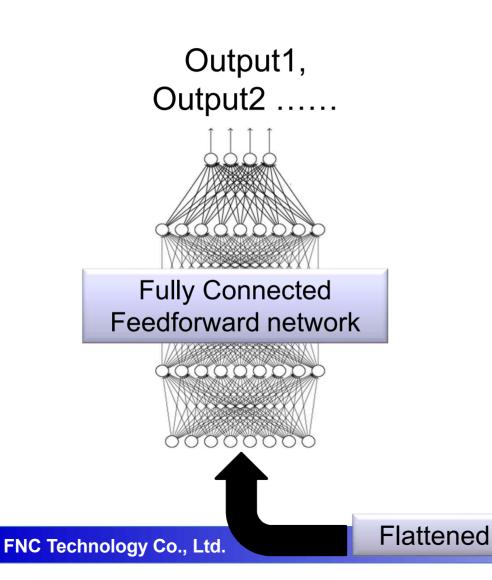
▶ Convolution Layer

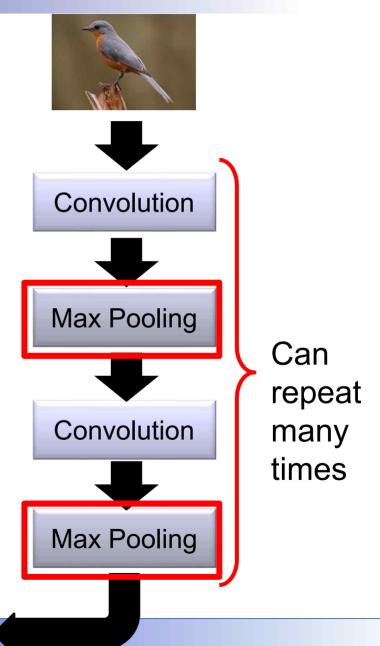
- Image Input(Green), 3x3 Filter(Orange)
- Convolved Feature

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0,
0	1	1,	0,0	0,1


4	3	4
2	4	3
2	3	4

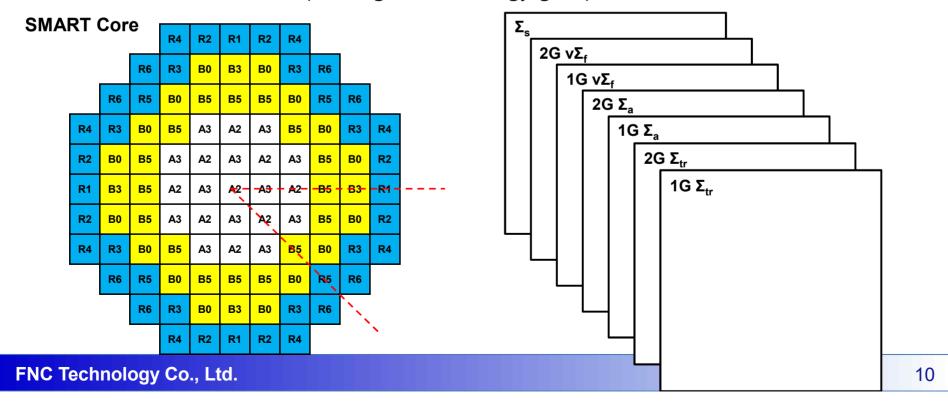
Image


Convolved Feature


► Pooling Layer

- Extract Features with divided Layer
 - Max Pooling
 - Average Pooling

■ The whole basic CNN




9

■ A CNN analysis for the SMART Core (Initial Core Condition)

- **▶** Composition of Training Data (MASTER XSL Used)
 - Input: Loading Pattern, GC data for each FAs
 - Loading Pattern Randomly generated with 1/8 symmetry LPs
 - GCs data for each FAs Σ_{tr} , Σ_{a} , $v\Sigma_{f}$, Σ_{s} GCs data
 - 7 GCs depending on the energy group

■ SMART Core CNN Model

■ Sensitivity Study for the Optimized CNN Model

► Compare the loss values affected by the values(number of filters, number of layers and etc) used in the model

# of Filters	Loss	# of CL	Loss
7	0.0700	1	-
14	0.0340	2	0.0357
21	0.0191	3	0.0315
28	0.0154	4	0.0054
35	0.0136	5	0.0053

# of FCL	Loss	Size of FCL	Loss
1	1	175	-
2	0.0347	350	0.0357
3	0.0314	525	0.0233
4	0.0272	700	0.0191
5	0.0242	875	0.0174

■ Optimized CNN Model

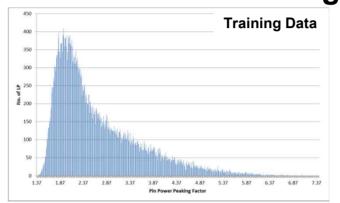
Layer	Output Shape	Param #		
Conv. Layer 1	(11,11,35)	4235		
Conv. Layer 2	(10,10,70)	7000		
Conv. Layer 3	(9,9,105)	8505		
Conv. Layer 4	(8,8,140)	8960		
Max Pooling	(4,4,140)	2240		
Flatten	(2240)	2240		
FC Layer 1	(4480)	4480		
FC Layer 2	(2240)	2240		

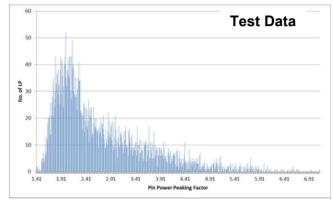
<Loss Function>
Mean Squared Error (MSE) : MSE is
a loss function widely used when
operating deep learning models for
regression purposes.

$$L = \frac{1}{2} \sum_{i=1}^{N} (y_i - t_i)^2$$

■ CNN Verification Result (SMART BOC)

► 1/8 Symmetry LPs (Train: 50,000/Test: 5,000)


- · Σ_{tr} , Σ_{a} , $v\Sigma_{f}$, Σ_{s} GCs Data
- Training was performed with output F_r
 - Trained F_r Range 1.21 ~ 6.71
 - Test F_r Range 1.28 ~ 6.44


LP Examples

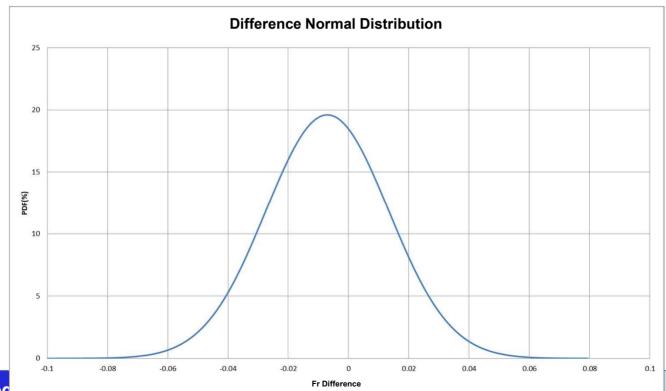
		•		R4	R2	R1	R2	R4				
			R6	R3	A 3	A2	A 3	R3	R6		_	
_		R6	R5	A2	A 3	A 3	A 3	A2	R5	R6		
	R4	R3	A2	A2	A2	В0	A2	A2	A2	R3	R4	
	R2	A 3	A 3	A2	В0	A2	В0	A2	A3	A3	R2	
	R1	A2	A 3	В0	A2	B3	- A2-	-B0-	-A3-	A 2-	 	
	R2	A 3	A 3	A2	В0	A2	BQ	A2	A3	A3	R2	
	R4	R3	A2	A2	A2	В0	A2	A2	A2	R3	R4	
		R6	R5	A2	А3	А3	А3	A2	Ř5	R6		•
	•		R6	R3	A 3	A2	A 3	R3	R6			
				R4	R2	R1	R2	R4		_'		

								1			
			R4	R2	R1	R2	R4				
		R6	R3	В3	В0	В3	R3	R6		_	
	R6	R5	ВЗ	В3	В0	В3	В3	R5	R6		_
R4	R3	В3	ВЗ	В0	A2	В0	ВЗ	ВЗ	R3	R4	
R2	ВЗ	В3	В0	A2	A2	A2	В0	В3	В3	R2	
R1	В0	В0	A2	A2	A3 -	-A2-	- A 2 -	-Be ·	- B0-	-R1 -	
R2	ВЗ	В3	В0	A2	A2	A2	В0	В3	В3	R2	
R4	R3	В3	ВЗ	В0	A2	В0	B3	В3	R3	R4	
	R6	R5	ВЗ	В3	В0	В3	В3	Ř 6	R6		•
		R6	R3	В3	В0	В3	R3	R6		•	
	'		R4	R2	R1	R2	R4		•		

■ Data Profile for the Training Data and Test Data

■ FRA Results

RMS Error	Max Error*	Average Error*	1% Excess Error*	3% Excess Error*	
0.0156	4.03%	0.51%	6.86%	0.12%	


^{*} Absolute Error

■ Fr Results

RMS Error	RMS Error Max Error*		1% Excess Error*	3% Excess Error*	
0.0148	3.91%	0.43%	6.40%	0.06%	

■ Fr difference distribution analysis

Fr	Average	Stdev(σ)	+2σ Excess	-2σ Below		
			2.54%	2.34%		
	-0.0081	0.0096	+3σ Excess	-3σ Below		
			0.26%	0.44%		

■ CNN Verification Result (SMART BOC)

- ► Asymmetric LPs (Train: 50,000/Test: 5,000)
 - · Σ_{tr} , Σ_{a} , $v\Sigma_{f}$, Σ_{s} GCs Data
 - Training was performed with output F_r
 - Trained F_r Range 1.78 ~ 7.29
 - Test F_r Range 2.04 ~ 6.44

LP Examples

	•							_		
			R4	R2	R1	R2	R4			
		R6	R3	A 3	A2	A 3	R3	R6		_
	R6	R5	A2	A 3	A3	A3	A2	R5	R6	
R4	R3	A2	A2	A2	В0	2	A2	A2	R3	R4
R2	A3	A3	A2	В0	A2	В0	A2	A3	A3	R2
R1	A2	A3	В0	A2	В3	A2	В0	A3	A2	R1
R2	A3	A3	A2	В0	A2	В0	A2	A3	A3	R2
R4	R3	A2	A2	A2	В0	A2	A2	A2	R3	R4
	R6	R5	A2	A3	A3	A3	A2	R5	R6	
		R6	R3	A 3	A2	A3	R3	R6		•
			R4	R2	R1	R2	R4		_	

								ı		
			R4	R2	R1	R2	R4			
		R6	R3	В3	B0	В3	R3	R6		
	R6	R5	В3	В3	В0	В3	В3	R5	R6	
R4	R3	В3	ВЗ	В0	A2	В0	В3	В3	R3	R4
R2	ВЗ	В3	В0	A2	A2	A2	В0	В3	В3	R2
R1	В0	B0	A2	A2	A3	A2	A2	В0	В0	R1
R2	В3	В3	В0	A2	A2	A2	В0	В3	В3	R2
R4	R3	В3	В3	В0	A2	В0	В3	В3	R3	R4
	R6	R5	В3	В3	В0	В3	В3	R5	R6	
		R6	R3	В3	B0	В3	R3	R6		-
			R4	R2	R1	R2	R4		-	

■ Fr Results

Max Error*	Average Error*	1% Excess Error*	3% Excess Error*
28.77%	4.31%	84.38%	55.94%

^{*} Absolute Error

■ Feasible Range Analysis

► F_r Range - 2.04~3.00

► Train Data: 10,059 / Test Data: 1,036

Max Error*	Average Error*	1% Excess Error*	3% Excess Error*
12.35%	1.45%	18.23%	11.71%

^{*} Absolute Error

4. Summary

- Convolutional neural networks (CNN) were applied in the prediction of the pin power peaking factor of SMART core at initial core condition.
- The results show that the pin power peaking factor can be accurately predicted with very high computational efficiency.
 - ► The error in the maximum pin power peaking factor at the region of interest was less than 3%.
- But it is possible to predict only for the similar core shape and data with which it has been trained. Therefore, reinforcement learning and self-learning functions are required for new core shape and data.

THANK YOU

www.fnctech.com

Headquarters: Heungdeok IT Valley Bldg. 32F, 13, Heungdeok 1-ro, Giheung-gu, Yongin-si,

Gyeonggi-do, 16954, Korea

TEL. 82-31-8065-5114 / FAX. 82-31-8065-5111

Institute of Future Energy Technology:

46, Topsilro, Giheung-gu, Yongin-si Gyeonggi-do, 17084, Korea

TEL. 82-31-8005-6015 / FAX. 82-31-8005-6014

Daejeon branch : Daeduk Tech Business Center, 1004-2, 593, Daedukdae-ro, Yusung-gu, Daejeon-si, 34112, Korea TEL. 82-42-867-5114 / FAX. 82-42-867-5110