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1. Introduction

The conceptual design of transuranic (TRU) burner
sodium-cooled fast reactor of 3800 MWt is being
performed by KAERI. In this type TRU burner reactor, the
decay heat exchanger (DHX) is connected to the passive
decay heat removal system (PDHRS) and the active decay
heat removal system (ADHRS), and consists of the inner
piping of the DHX where the secondary sodium enters and
the upper and lower tube sheets separated by a straight
tube.

Fig. 1 shows the design concept of a DHX. In this
figure, primary sodium enters the inlet groove of the DHX
at the bottom and flows vertically downward parallel to the
heat exchange tube. The primary sodium that the heat
exchanged inside the DHX is discharged from the lower
part outlet inside the DHX. The external diameter of the
DHX cylinder is designed as 933 mm considering the
arrangement of the piping of the decay heat removal
system and the heat exchange tubes. As shown in Fig.1,
the heights of nozzles connected to hot and cold piping are
designed to be 1340 mm and 3040 mm from the reactor
head [1]. The cylindrical body and heat exchange tubes of
the DHX are classified as safety grade 1. This is because
DHX tubes provide a pressure boundary between
radioactive primary sodium and non-radioactive secondary
sodium. The material of heat exchange tubes of the DHX
and internal structure is 9Cr-1Mo-V steel.
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Fig. 1. Conceptual drawing for DHX of TRU burner
reactor

2. Stress Analysis of DHX

2.1 Analysis Model

Modeling of three-dimensional finite element
analysis is performed for the structural integrity
evaluation of the DHX of TRU burner reactor [2].

A half-symmetric model for structural analysis is
used, and in case of heat exchange tubes, equivalent
stiffness model of the cylinder type for the
simplification of the analysis is applied. The finite
element model used in the structural analysis is shown
in Fig. 2.

Fig. 2. Finite element model for DHX of TRU burner
reactor

Fig. 3 is the loading conditions for pressure and
thermal load. The design pressure of 1.0 MPa is applied
to all faces contacted with the secondary sodium inside
DHX as shown in Fig. 3 (a). In the case of thermal load,
the temperature distribution in steady state operating
condition is assumed as shown in Fig. 3 (b). The
analysis boundary condition of DHX is shown in Fig. 4.
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Fig. 3. Applied load for DHX of TRU burner reactor
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Fig. 4. Boundary condition for DHX of TRU burner
reactor

The degree of freedom for the bottom side of DHX
support flange is constrained for the displacements in
the upward and radial directions, taking into account the

conditions under which it is installed in the reactor head.

2.2 Analysis Results

The structural analysis considers the dead weight,
pressure, and steady state thermal load, and the result of

the stress analysis for the dead weight is shown in Fig. 5.

The maximum stress for the dead weight is 6.9 MPa,
which occurs at the geometrical discontinuous part of
the DHX support flange. The stress analysis result for
the sodium weight filled inside DHX is shown in Fig. 6.
The maximum stress by sodium weight is 5.7 MPa,
which occurs at the Y-junction discontinuity of the
DHX outer cylinder.
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Fig. 5. Stress analysis result for dead weight
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Fig. 6. Stress analysis result for sodium dead weight

For the evaluation according to the ASME design
rule for stress analysis results, the stress evaluation
sections for the high stress generation parts are selected,
and the stress linearization for such sections is
performed. The locations and corresponding nodes for
the structural integrity evaluation sections are presented
in Figs. 5 and 6, respectively

As a result of the stress analysis of the pressure load
inside DHX, the maximum stress is 179 MPa as shown
in Fig. 7, which occurs at the discontinuity of the nozzle
exit for the secondary sodium system of the DHX. As a
result of the stress analysis of the thermal load, the
maximum stress is 159 MPa and occurs at the DHX
lower tube sheets as shown in Fig. 8.
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Fig. 7. Stress analysis result for Pressure
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Section-D : Node (n246924-n246923)
Fig. 8. Stress analysis result for thermal load

The locations and corresponding nodes for the
structural integrity evaluation sections are shown in
Figs. 7 and 8, respectively.

3. Structural Integrity Evaluation of DHX

The structural integrity evaluation results for DHX
are shown in Table 1 and Table 2. The ASME IlII,
Div.5-HBA design rules are applied because the
maximum temperatures of the evaluation sections are
kept below the creep temperature [3].

Table 1 Structural integrity check result (design
condition)
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Table 2 Structural integrity check result (service level
A condition)
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As a result of the structural integrity evaluation of the
design condition and operating level A condition for the

corresponding evaluation sections of DHX, ASME
allowable stress limits are satisfied and design margin is
0.49 or higher in the design condition.

4. Conclusions

As a result of the structural integrity evaluation for
the DHX of TRU burner reactor, it is confirmed that the
ASME allowable stress limits are satisfied for the dead
weight, pressure, and steady state thermal load and the
DHX is structurally adequate in this evaluation
condition.
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