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1. Introduction

In a nuclear power plant, an effective heat removal 

technology and internal safety monitoring are important 

to maintain the stability of the system in operation and 

accident situations. As an example, in the case of a 

sudden increase in reactor power due to careless 

withdrawal of the control rod from Hanbit Unit 1 in 

2019, the possibility of the nuclear reactor abnormality 

was determined only by calculating the thermal output, 

but the actual physical phenomenon occurred inside the 

reactor could not be identified [1]. This was due to the 

lack of internal status monitoring technology in the 

reactor and the operator's calculation error on the 

internal condition, which led to the need for the 

development of human error reduction technology and 

internal monitoring technology of the reactor to prevent 

a recurrence. Besides, figuring out the flow and boiling 

phenomena inside the reactor was a major concern 

because the nucleate boiling phenomenon has 

accelerated CRUD (an acronym for chalk river 

unidentified deposits) deposition, leading to reduction 

of reactor safety margin and the occurrence of axial 

offset anomaly, which has drawn more attention to 

boiling phenomena [2]. 

The 4th industrial revolution and digital twin, which 

are recently emerging in the industry field, are expected 

to innovate maintenance, safety, and efficiency with the 

concept of digitalizing everything in the system and 

analyzing measured big data signals with artificial 

intelligence to provide users with real-time status and 

insights of the system [3]. This concept is expected to 

be sufficiently applied to the reactor condition 

monitoring system to produce data on the state of the 

system using various measurement sensors and to 

investigate the internal state of the system through it.  

One of the non-destructive measurement technologies, 

acoustic signal technology, is a promising method for 

measuring the condition of inaccessible systems. 

Acoustics detects elastic signals emitted by irreversible 

elastic changes in the system, such as crack formation 

[4]. Several studies revealed that through acoustic signal 

instrumentation the internal phenomena were identified 

according to the flow of the system and behavior of 

nucleate boiling bubbles [5,6]. Besides, by applying 

deep learning technology the correlation between signal 

data and physical phenomena was effectively derived 

[7,8].  

For the advanced reactor condition monitoring system, 

the acoustic measurement and deep learning-based 

analysis of the pool boiling system was conducted as a 

fundamental level. In addition, this study aims to figure 

out the feasibility and applicability of acoustic sensors 

on reactor condition monitoring system. We figured out 

the relationship between the pool boiling heat transfer 

phenomena and acoustic signals. Finally, a deep 

learning model that can identify the pool boiling heat 

transfer regimes was developed. 

2. Methods

2.1 Pool Boiling Experiment 

The acoustic signal according to the boiling 

phenomenon was measured while performing the pool 

boiling experiment. As shown in Fig. 1, the 

experimental apparatus consists of a data acquisition 

system, power supply, pool boiling chamber, cartridge 

heater, condenser, power supply, and resistance 

standard. All phenomena were captured by high-speed 

video (HSV) and the heater temperature was measured 

by Infrared (IR) camera. The experiment was conducted 

using two different heaters, one was the bare SiO2/ITO 

heater and the other was the hydrophobic coating heater. 

The purpose of the hydrophobic coating heater was for 

observing the film boiling phenomena since the 

hydrophobic surface has very low critical heat flux and 

it could provide all the boiling regime phenomena. 

Fig. 1. Schematic diagram of pool boiling experimental 

apparatus for measuring the boiling acoustic emission signal 

The acoustic signal of the boiling phenomenon was 

measured by attaching a broadband frequency contact 

AE sensor (R15a, Physical Acoustics) to the underside 

of the heater, and after measuring the background noise, 

the threshold amplitude was set and the acoustic signal 

measurement experiment was performed. The deionized 

water was used as a working fluid and all experiment 



was conducted under saturation condition at the 

atmospheric pressure. 

2.2 Deep Learning Modeling 

The heat transfer phenomena that can appear in the 

pool boiling experiment are natural convection, nucleate 

boiling, critical heat flux, and film boiling. To monitor 

the phenomenon in the pool boiling system, it is 

necessary to identify the phenomenon through acoustic 

signal data when four heat transfer phenomena appear. 

For this purpose, a deep neural network (DNN) was 

developed as shown in Fig. 2. The DNN model was 

composed of one input layer, 2~3 hidden layers, one 

output layer with 100~1000 neurons in one layer.  

The acoustic signal measured in the experiment was 

transformed into power spectral density (PSD) using the 

Fast Fourie Transform (FFT) method to analyze the 

amplitude-frequency characteristics of the acoustic 

signal. This data was used as input data of the DNN 

model and four boiling heat transfer regimes were used 

as output data, and the performance of the model was 

identified by comparing the prediction result of the 

model with the experimental result. 

Fig. 2. Deep learning architecture for classifying the boiling 

regimes using acoustic signals power spectral density as an 

input data 

3. Results and Discussion

3.1 Acoustic Analysis of Pool Boiling 

The pool boiling experiment using two different 

heaters, which one was bare SiO2/ITO heater and other 

was hydrophobic coating heater, was conducted for 

measuring the acoustic signals according to the four 

different boiling heat transfer regimes. As shown in Fig. 

3, the natural convection, nucleate boiling, CHF, film 

boiling phenomena were captured by HSV and acoustic 

sensors, and this data was used to analyze and identify 

the acoustic characteristics for application to the deep 

learning-based monitoring system. 

Each boiling regime was classified based on HSV 

images, and the graph on the right of Fig. 3 is the 

original acoustic signals measured at each boiling 

regime. In the natural convection regime, the signal 

according to the fluid transport due to the density 

difference was measured, and in the nucleate boiling 

regime, the signal due to the generation, growth, and 

release of the nucleate boiling bubble was measured. In 

CHF, intensive voltage signal was measured due to the 

collapse of the vapor, whereas in the film boiling regime, 

a very low voltage signal was measured due to the 

bubble departure above the vapor film. 

The original acoustic signal can compare the 

amplitude of the voltage with measured signals over 

time duration 10ms, but it was difficult to derive 

features that can represent each boiling regime. Thus, 

the most widely used FFT method in the signal analysis 

method was applied to each signal for characterization, 

and the PSD frequency-amplitude results were obtained 

as shown in Fig. 4. 

Fig. 3. High-speed images and AE signals of pool boiling 

phenomena according to boiling regimes 

In Fig. 4, frequency characteristics were identified for 

each regime. When comparing the graphs of natural 

convection and nucleate boiling regime, it was found 

that amplitude peaks occurred in the range of 10 to 30 

kHz and 40 to 50 kHz due to nucleate boiling. The two 

ranges of signals were very largely amplified in CHF, 

and very small signals were measured in the 10~30kHz 

range in the film boiling regime.  
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Table I. DNN model case study for identifying the optimum model 

Case Model 
Hidden layers 

and neurons 
Input data 

Training 

Accuracy (%) 

Test 

Accuracy (%) 

1 DNN (1000,1000) Original acoustic signal 23.2 22.9 

2 DNN (1000,1000) PSD data 71.1 70.9 

3 DNN (300,300,300,300) Original acoustic signal 24.5 23.8 

4 DNN (300,300,300,300) PSD data 73.6 74.0 

5 DNN (500,500,500,500) PSD data 99.9 96.4 

6 CNN+DNN (1000,1000) Original acoustic signal 20.3 27.1 

7 CNN+DNN (1000,1000) PSD data 44.8 43.6 

These features can be used as a criterion for roughly 

classifying boiling heat transfer phenomena, and each 

phenomenon can be more clearly distinguished through 

the developed DNN model. 

Fig. 4. Power spectral density of boiling AE signals according 

to the boiling regimes 

3.2 Deep Learning and AE-based Monitoring System 

To develop a system that can figure out the boiling 

heat transfer regime in the pool boiling system by using 

the DNN model and acoustic signal data, the 

optimization of the deep learning model was first 

performed. The total number of acoustic signal data and 

PSD data was 10,707, of which 9,634 data was used for 

deep learning training and 1,073 data was used for 

testing. As shown in Table I, seven case models were 

developed using the model configuration (DNN or with 

a convolutional neural network, CNN), the number of 

hidden layers, the number of neurons, and the input data 

type (original acoustic signal or PSD data). The optimal 

DNN model was found by comparing the prediction 

accuracy of each model. The case 5 model, a DNN 

model with 4 hidden layers and 500 neurons, showed 

the best prediction accuracy of 96.4%, and this model 

was selected as the optimal model. 

The total prediction accuracy of the Case 5 model 

was 96.4%, but to understand the prediction 

performance of the model in more detail, the accuracy 

of each boiling heat transfer regime was compared and 

shown in Table II. In the case of natural convection and 

film boiling regime, the accuracy was 99.1% and 100%, 

respectively, showing nearly perfect predictions, and 

95.9% slightly lower than the total accuracy of the 

nucleate boiling regime. On the other hand, CHF 

showed a prediction accuracy of 0%, which is due to the 

very limited learning (only 12 training CHF data and 3 

test CHF data). The reason for the small number of CHF 

data was that if the CHF was reached during the 

experiment, the heater temperature rose rapidly, and the 

heater was destroyed. To prevent this, the experiment is 

stopped immediately after reaching the CHF. 

Table II. The prediction accuracy of deep learning model 

for the pool boiling regime classification 

Natural 

Conv. 

Nucleate 

Boiling 
CHF 

Film 

Boiling 
Total 

Test 217 819 3 34 1,073 

Pass 215 785 0 34 1,034 

Fail 2 34 3 0 39 

Acc. 99.1% 95.9% 0 % 100% 96.4% 

4. Conclusions

In this study, to develop a technology that monitors 

the internal heat transfer phenomenon of the pool 

boiling system with external measurement and deep 

learning technology, first, the acoustic signal was 

measured in the pool boiling experiment and the boiling 

heat transfer regime was classified from the HSV image. 

Through the PSD result of the acoustic signal, the 

frequency characteristics appearing in each regime were 

different, and frequencies in the range of 10 to 30 kHz 

and 40 to 50 kHz indicated the nucleate boiling. PSD 

data was used as the training input data of the DNN 

model, and the heat transfer regime prediction accuracy 

of 96% was achieved through the optimization process. 

Through this, we proposed a technique that can figure 

out the heat transfer phenomenon inside the pool boiling 

system without additional observation such as HSV by 

using acoustic signal measurement and deep learning. 
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