A Preliminary Study on the Culpability of Violation Errors in Nuclear Events and their Investigations

Lee Yong-Hee

Severe Accident Monitoring & Management Research Team, Korea Atomic Energy Research Institute Daedeok-daero 989-111, Daejon, Korea, 34050 yhlee@kaeri.re.kr

1. BACKGROUND

Previous recent several studies on human errors in nuclear reveal a demanding research topic on [2018/2019/2020 violation type errors Lee]. Violation errors should be considered additionally during various human factors safety assessments such as HRA(human reliability analysis) and V&V(verification and validations) of design and severe accident management strategies as well as within human error event investigations, PSR (periodic safety review), Stress Test, and their back-fittings.

This high-reliability era is demanding a different level of safety. The expected technical advances resulted into the super-connected-ness and rather more vulnerability (2018 Lee). Nuclear itself has revealed very unique and hard-to-overcome characteristics for system safety. (2015, 2016 Lee)

- large and complex system into a social disaster
- non-injury system loss with low self-motives
- latent hazards by multiple barriers and DID
- rare data for learning from errors
- tightly-coupled but delayed risk
- out-of-loop by the partial automation/integration

People is expecting the safety as a feeling of rather wholistic security without uncertainty rather than simple completed functional performances. However the human errors including violations still remain the basic uncertainty to nuclear safety. Violation especially might be a typical types of erroneous performance to be happened in "unprepared" scenarios, "unknown-unknown" risk, and fundamental surprise in unexpected situations described in Fukushima report (2015 IAEA).

This paper describes a preliminary study on the violation type human errors and their treatments during human error event investigations in nuclear. The first and most basic issue of violation is about how to cope with the culpability, and an approach is proposed with multi-layered framework and human error 3.0 concept(2015/2019 Lee) for enhancing the human error investigations in nuclear.

2. VIOLATIONS UNDER A SAFETY CULTURE ISSUE IN HUMAN ERROR INVESTIGATIONS

The human error event investigation systems such as ACRS, HPES, HPIP, HFACS, etc. may have a traditional typical approach to human errors. The traditional human error investigations have adopted a classification on human failures to included in event he structures. Manv classifications and taxonomy on human behaviors have been developed. Various criteria such as consequences, human behavior and/or system function, and causal and/or influencing factors can be adopted to discriminate the different characteristics of human error events.

The types of violations such as routine/permitted mannerism, violation, negligence, avoidance, optimized and convenience violation, temporal and exceptional violation, test violation, after-event violation, asked/induced violations could he examples found in recent revisit to human errors. Influencing and causal factors can characterize violations. Recent proposal to the house model of violation is described with 10 keys and 152 factors (2016 Kang et al).

1 Web Monut	I	Organization/Edity management	1	Watpises	D	Communication	1	Tehr
1 Work manual evidence	t	Muntan resource management	T	Now	1	Communication acidance	D	Physial Migue
2 Weil Harvel Acamibility	1	Employee support program	1	Tenjereva	Īī	Communication Requirecy	Ti	Physial thesi
1 Work manual design	1	Supervisir for team control	1	Runnerce .	ī	Communication contents - darity	Ti	Provid subbity
4 Wet matual yety	4	Selety leadership of supervisor	14	news)	4	Communication contents - expressionleness	J	Neuri and Auditory serves
T Weik Harval softens - Assureg	1	Organization suffuie	T)	Art quality	T	Communication contents - dolarium	D	Cayairty for lasprophies
6 Wolt manual sortants - servicianess	4	Organizational justice	1	Ovina	6	Communitation bring	1	Saley constituents
7 Wol manual spharts - suant)	17	Schedule planning of organization	D	Vibration	17	Communication participant	D	Activenus
8 Work manual solitainty - minister	4	Colperativ management	1	Radiation	1	Communication method - equipement	Ti	Mathe of volumeeting
a construction of the		Value of organization safety	1	Speck continets	1	Communication method - criss check	Ъ	(af exteen
2 John Tank	Ūü	Jaley program	в	Tohma	10	Communication language - intonation	Ī	Jacob de de la comp
1 job fak toe		Departmention reactive of decision making	1	Work path-		Communication language - technical term	1	Optimum
I job task importance related to safety	12	Safety learning organization	1	Workplace and	Е		Ī	Netsi dire
3 Justicity for teal		Cras regional	1ù	Other markets of wantstates	ii)	Tage	Ī.	Aspendally .
4 (08 submone)	14	Maintenance of equipment in nuclear power plant	N	Organization of a extreme shattan	T	Management of ph/lass	Ti	()mplumity
1 Det investi	Т	Education/Uniting	6	Visual Rull Kay davida		Lasterity	Ti	Attracts to education/having
1.0A spenie	T	Saurion hairing program accounts	Ti	facity maps - electrical	ĥ	Price of mater	Ti	Emotion/tension sale
1 Working frouts	1	Aduation training time	Te	facility design - mechanical	4	Histoprus if laste	10	Organizational commitment
8 Workload - task of Routy	Tř	Education having conterns		facility design - athreas	ħ	Team membership		Los unatacion
6 Workload - last complexity/diversity	4	Societan Vaning methods	1	Onterface	6	Near cutton regulation	Īı	Matania in systems
Workload - task martity	5	Education/Training instructure	12	Origination of tudiest power plant	17	Network/Cohes vehicles	12	Cardler between work and family
11 Worklash - working time	1	Education having program	12	Eauphent (4/W & S/W) - Existence	ĩ	Team decision making	Ti	Mentel chroni
12 Workload - Hepuercy	Т	1997 - Selon 1999 - C	12	Rougment INW& SWI - Anangement	1	Nean mental model	Ŀ	Alterton
13 Workload - Hultiple task	Т		12	Baugment H/W & S/W - Revo	10	Next education/training	Ĩ.	Lacue of element
12 Workload - risk-hest	T		1h	Revenant In/W & S/W - design	11	Personal waterining towerker, been	Ū.	Drug ether
1) Number of victors	Т		18		ų	feen studye	Te	Carlwon Regeting/metals
William great	Т		Б	Supervise autority	1ü	Seen calectiven	Ti	Augurghter, prediction, presidenter
17 Working great	Т		1	Lepenser qualification and ability	14	Occention	Ŀ	in rite
	Т		Б	Supervisor between attuine	15	Seting over in team	Ta	Previous experience of account
	Т		17	Alcolent investigation and analysis	Ϊü	Crise materie	Ta	(RPHI
	Т		1	Accent nanajentent	Г		Tr	Nensy
4.3	Т		Ti	improvement and prejection measures	Ľ		1i	Work experience
	Т		Т		Г		Ti	Talify knowledge
	Т		Т		Г		Ti	High planning ability
	Т		Т		Ľ			Cres response ability

Figure 1. A Classification of Influencing Factors of Violations in Nuclear (Kang, et. al. 2015)

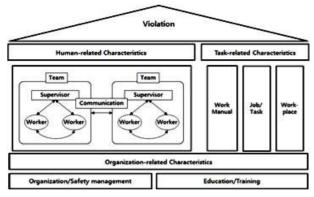


Figure 2. A House Model of Violations in Nuclear (Kang, et. al. 2015)

More complicated understandings on violations are psychological modes, status, and cognitive level of human error nature. Reason's taxonomy shows a typical classification of human errors in a perspective psychology. of It utilizes an interpretation of internal process of memory, attention control and others. Intention especially discriminate the violations and sabotage from more typical slip, lapse, and mistakes.

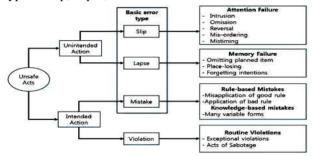


Figure 3. Types of Human Errors (by Reason)

Although human error researchers such as Embey, Kirwan, Reason, etc. have excluded some part of human errors by introducing the psychological criteria of intention, however, human error events including violations seem to remain vague to get an effective countermeasures. Violation is a unique type of human erroneous performance in the sense of both the huge impact to the system safety in practice and the profound interest from the psychological and judical perspective.

Safety culture instead of violations becomes prevailing as a common and descriptive term of the most of recent safety reports that included violations expecially(2019 NSSC, 2020 Jung). It sometimes raises more sophisticated issue of safety culture, that might be one of the most prevailing words within event investigations nowadays around nuclear and a conclusive measure to get nuclear

safety after Fukushima and Chernobyl accidents. Mainly after IAEA's self-assessment model there have been various efforts to resolve the safety issue by adopting system dynamics culture simulation, organization/attribution model, business modeling, competence process enhancement. managerial regulatory model, and others (2020 Lee). In the other side of efforts on safety culture, more scrutinized taxonomy and schemes to capture the details of safety culture have been articulated rather than studying the violation itself.

Safety culture may not separated from human errors including violations and even up to sabotages. New categorizations are proposed in terms of EOC(error of commission) (2019 Kim) EOO(error and of omission) such as mannerism(2014 Lee), and to cover the security issues together (2018 Suh & Im). The safety culture looks a main issue in human error events in spite of three plausible regressions (2016, 2018 Lee). Human error taxonomy could be extended to include this new comer of violations rather than safety culture. The causal factors within human error event investigation should be exhaustive for including all HOFs(human and organizational factors). A study example is the lessons learned from trip events extended to the organizational factors as the main results of human error investigations (2009 KAERI, 2014 Kim et. al.)

3. CULPABILITY ISSUES ON VIOLATIONS

Human error investigations meet the concerns of responsibility, since the errors can be described as a pass over the rules and criteria, and understood with a repent. It frequently reveals issues of blame to people just involved in the event. A substitution test logic to discriminate the 'honest error' is an example of the culpability study on violations in aviation.

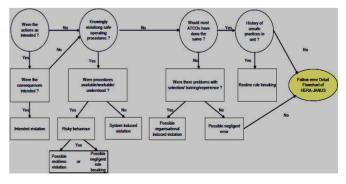


Figure 4. Substitution Test on Violations in Aviation (Adopted from Reason and Govaarts in HERA-JANUS, part)

It seems an articulated guide for discriminating acceptable behaviors for 'Just' culture in aviation. Violations can be characterized by intentions at first, however, there must be two different kinds of intentional failures. One is a failure to make an appropriate intention and the other is the problem of intention itself. The first should be separated from the faulty and bad intentions. They are focused to promote the questioning attitude and reporting more actively, however just a simple version of early considerations to provide a culpability basis to errors.

Beside the intention of consequences, other details to scrutinized violations for judical system need be investigated such as prior perception of rules and rule-breaking, etc. A more exhaustive set of keys and factors can help violation studies in more detail. (2020 Lee)

	keys	sub-factors			
	consequence (negatives)	loss/damage punishment			
intention	value gain (positives)	gain interest, fun etc. personal value convenience, others			
	mis-captured	(selected in domain tasks)			
perception	rule	rule itself/details rule purpose intended rule-breaking meaning of rule-breaking			
	availability	physical informational			
	intervention	self peer supervisory			
manageme	E&T	education-class, case, mt'l training – OJT and etc. PJB etc.			
nt	experiences	job-related personal others			
	organization	(selected in domain org.)			
	others	(selected on purpose)			

Table	1.	Keys	and	Factors	to	Violations	(2020	Lee)
-------	----	------	-----	---------	----	------------	-------	------

4. AN EXTENDED FRAMEWORK PROPOSED FOR VIOLATION INVESTIGATIONS

The categorization of violations may give a more details on their causes. The objectivity may be vague and quarrelsome, strongly dependent on the perspective of investigations rather than any technical one. So a further categorization of violations by incorporating the suggested factor can be beneficial but still biased to its perspective.

A new perspective of *Human Error 3.0* changes the main focus of human error investigations from the factual causes to the practical countermeasures (2016, 2018, 2019 Lee). A few postulations on violations are suggested as followings

- cause is not necessarily to be a countermeasure
- influenced externally rather than internally
- external factors is to be managed
- blame is not always effective/true to violations

A study on the three eras of human error studies according to the consequences and their measures into *Human Error* $1.0 \sim 3.0$ describes suggestions enough to include violations as a new type of human errors during human error event investigations. It might be inevitable to add three additive layers of analysis on human error events.

Table 2. Diffe	rent Layers	to Violations	Analysis
----------------	-------------	---------------	----------

functional level	event sequence				
behavioral level	human assignments : R&R				
culpability level	 consequences countermeasures				

The culpability level includes two respective analyses on human errors. The one is level of responsibilities assigned prior events. It can be conducted according to the objectiveness and validity. However another different analysis is focused to the necessity to ask responsibility within the countermeasures after the human error analysis.

A new concept of *Human Error 3.0* can be incorporated to assess the violations during human error investigations especially for countermeasures of more practical purpose. It has more focused to the countermeasures rather than causes of human error events, since the effective countermeasures can be different from the causal factors in practice. Violations may have culpabilities to blame the person of human error behaviors, however, be beneficial for a more practical approach to include violations within the eventual consequences of human error events.

5. DISCUSSIONS AND CONCLUSIONS

This is a preliminary study on the culpability of violations during the human error investigations. Further study in on-going in nuclear especially for regulation side. Violations also can be described as a just non-compliance of rules and criteria at first, but eventually concluded into a rule-breaking, an abuse, a criminal activity, and other culpability terms. Violation itself not means a necessity of blame to human but an effective countermeasure. A multi-layered investigation to human errors may be beneficial to cope with the following demanding issues rather than safety culture in nuclear.

- organized irresponsibility
- human credibility in security and insider threats
- organizational responsibility to stress test
- optimal R&R within and between organizations
- judical and technical study on human errors

Human errors are expected to be seldom solely deliberate and malicious in a system. Moreover they are induced by the situation-and-atmosphere of overall system. The responsibility blaming and related safety culture issues to violations might be inventable and sensitive to public especially for the safety in nuclear events. The technical understanding for lessons learned should go before the blaming process. Experiences of human errors in nuclear are very rare and expensive, however, they are also invaluable to reveal the uncovered limitations of system internals and to fix them with countermeasures. Violations are informative with other human errors, too. So the proposed culpability approach to violations requires further study with more emphasis to countermeasures available and recommendable in a system.

ACKNOWLEDGMENT

This paper is supported by the Nuclear Safety Research Program grant funded by Nuclear Security and Safety Commission (NSSC) and KOFONS (*No. 2003010*).

REFERENCES

- Govaarts, C., Establishment of 'Just Culture' Principles in ATM Safety Data Reporting & Assessment. EAM2/GUI6. Eurocontrol, 2006
- Hudson, P. et. al., Bending the Rules: Managing Violation in the Workplace, Society of Petroleum Eng. Int. Conf. on Health, Safety & Env. in Oil & Gas Exploration, 1998
- 3. Jung, Y.H. et al., Current Status of Just Culture in Aviation and Its Applications to Nuclear Power Plants (in Korean), KINS/RR-2011, 2020
- 4. KAERI, Lessons Learned from the Trip Cases in Korean NPPs, 2007, 2009
- 5. Kang, B. et. al., Conceptual Models of Violation Errors in a NPP, J. Korean Society of Safety, 31(1), pp.126-131, 2016
- Kim, K.Y. A Study of Risk Communication Under Energy Transition Government, KNS 2019 Spring, 2019
- 7. KOSHA, Guideline for Human Error Analysis, KOSHA code P-11, 2007.
- Lee, Y.H., A State of the Art Report on the Current Human Error Studies: What and How to Cope with, *JESK30(1)* pp.1-8, 2011

- 9. Lee, Y.H., Human Error 3.0 Concept for High-Reliability Era, Proc. ESK-2015-Fall, 2015
- 10. Lee, Y.H., New Classification of Human Errors in High Reliability Era, Proc. ESK-2018 Spring, 2018
- Lee, Y.H., An Introduction of Human Error 3.0 Concept to Cope with the Safety Culture Issue in Nuclear, KNS-2018 Fall, 2018
- 12. Lee, Y.H., How to Consider the Unexpected Situations for the Human Factors Verification and Validation, Proc. ESK-2018 Spring, 2018
- 13. Lee, Y.H., A Study on the Technical Status, Issues, and Approach to HFE V&V of Nuclear Installations in Severe Accidents, KNS-2018 Fall, 2018
- Lee, Y.H., An Application of Human Error 3.0 Concept to Cope with the Organized Irresponsibility, ESK-2019 Spring, 2019
- Lee, Y.H., Human Error Research Trends Toward 21-st Century Nuclear Technology, Nuclear I&C 2019 Winter Workshop, 2019
- Lee, Y.H., A Revisit to the Technical Issues and Approaches For the Investigation of Human Error Events, KNS 2019 Fall, 2019
- 17. Lee, Y.H., How to Treat Violation Errors during Human Error Investigations in Nuclear Events, KNS 2019 Fall, 2019
- Lee, Y.H., A Categorization of Violations based on the Key-Factors and Plausible Countermeasures in Human Error Investigations of Nuclear Events. KNS 2020 Spring, 2020
- Rasmussen, J., Concept of Human Error: Is it Useful for the Design of Safety Systems? Safety Science Monitor, 3(1), 1999
- Reason, J., Human Error, Cambridge University Press, 1990.
- 21. Shorrock, S.T. & Kirwan, B., Development and application of a human error identification tool for air traffic control, *Applied Ergonomics*, 33, 2000
- 22. Suh, Y. and Im, M. Experimental measurement of Human Errors using psycho-physiological signals, ESK 2018 Fall, 2018
- 23. Wickens, C.D., Engineering Psychology and Human Performance, 2nd-ed. Harper-Collins Pub., 1992.