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1. Introduction

Assembly-wise two-step core calculation using nodal 

methods has been adopted as the primary core design 

method due to its low computing cost compared to the 

direct whole-core calculation (DWCC). It compromises 

accuracy for computing time. Nonetheless the solution 

accuracy is regarded sufficient for the practical 

applications in the industry because the predictions 

determined with bias and uncertainties are within the 

allowed range around the measured values. 

However, the need for obtaining detailed pin-level 

solutions is continuously increasing due to the tightened 

safety regulations and it becomes more difficult to meet 

the design criteria with the conventional two-step 

method. Yet none of the high-fidelity core analysis 

codes employing DWCC is able to meet the computing 

cost requirements for the nuclear design and analyses 

which involves repeated core calculations for fuel 

loading pattern search and design data generation. In 

this regard, pinwise two-step calculations are considered 

as a compromise for DWCCs. However, even the core 

calculation using the pin-homogenized multigroup 

(MG) cross sections (XSs) is still computationally 

demanding to be executed practically on personal 

computers (PCs), thus a proper measure to reduce the 

computing time should be taken. 

In this regard, we decided to explore the use of GPUs 

for the pinwise nodal calculation. Modern consumer-

grade GPUs equipped in PCs come out with significant 

computing power, and we already have successfully 

applied GPU acceleration to the direct whole core 

calculation code nTRACER [1] and the Monte Carlo 

code PRAGMA [2] that achieved remarkable speedups. 

Such experiences, along with the preliminary works of 

SCOPE2 [3] on GPU acceleration, gave us the 

confidence of the feasibility of accelerating the pinwise 

nodal calculation with GPUs. 

We are developing VANGARD (Versatile Advanced 

Neutronics code for GPU-Accelerated Reactor Designs) 

which is a GPU-based pinwise nodal design code, and 

this work is the initial phase of the development. This 

paper will introduce the nodal algorithm in VANGARD 

and the principles of GPU acceleration, along with some 

preliminary results obtained with a benchmark problem. 

2. GPU-based Pinwise Nodal Calculation

VANGARD employs Simplified P3 (SP3) form of the 

source expansion nodal method (SENM) [4, 5]. SENM 

was chosen as the primary nodal kernel in VANGARD 

in that the existence of hyperbolic terms helps capturing 

severe flux gradients in the pinwise multi-group core 

calculation. In this section, the formulation of SENM is 

briefly explained and the strategies of GPU acceleration 

are described. Detailed derivations and the definition of 

coefficients can be found in the references. 

2.1 One-node SENM Kernel for Pinwise Calculation 

In the following, subscripts for groups and directions 

will be omitted for brevity. Transverse-integrated one-

dimensional within-group neutron diffusion equation is 

written as follows: 
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In SENM, as the name implies, the source term Q  is 

expanded up to 4th order using Legendre polynomials 

as: 
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Plugging Eq. (2) in Eq. (1) and analytically solving for 

the flux yields the following solution: 
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The flux term in Eq. (3) is also expanded using the 

Legendre polynomials as follows: 
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Once the coefficients are obtained, node average flux 

is calculated as follows: 
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With the updated node average flux, outgoing current 

can be determined as follows: 
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The SP3 SENM equations are defined for the summed 

flux and the 2nd flux moment. The solution procedure is 

analogous to the diffusion case except for some changes 

in the definitions of coefficients: the value of   is set to 

1/4 and 7/16 for the summed flux and the 2nd moment 

equations, respectively, and diffusion coefficients and 

removal cross sections are defined differently for the 2nd 

moment equation. The SP3 SENM equations are given 

as follows: 
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The source terms are also defined separately for the 

summed flux and the 2nd moment equations: 
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The SENM kernel can be derived up to the 4th order, 

but for the solution of radial direction where the mesh 

size is small, the expansion is truncated at the 2nd order. 

Applying the 4th order expansion for the pin-sized mesh 

is an overkill and induces stability issues [5]. On the 

other hand, axial meshes are thick and the full 4th order 

kernel is used in the axial solution. That is, kernels of 

different orders are used in hybrid for efficient three-

dimensional pinwise nodal core calculation. 

2.2 GPU Acceleration 

2.2.1 Suitability of SENM for GPU Acceleration 

 

GPU is a subset of vector processor and is specialized 

at SIMD (Single Instruction Multiple Data) parallelism; 

namely, adjacent threads should perform same operation

on coalesced data. A GPU contains substantial number 

of simple arithmetic cores, which can deliver significant

floating point computing power. However, it is bounded 

by the performance of the relatively slow main memory, 

so a GPU contains several types of small but fast local 

memories, such as register, to buffer the main memory 

accesses. Therefore, the number of operations per each 

main memory access (= operational intensity) should be 

maximized to have high performance. To summarize, an 

algorithm should satisfy the following properties to be 

efficiently accelerated on GPUs: 

1. Branchless (single instruction)

2. Contiguousness of data access (coalescing)

3. Exploitation of local variables (local memory)

4. Compute-intensive (operational intensity)

The properties of the nodal method make it suitable 

for the GPU acceleration. First of all, the data structure 

and the iteration scheme of the nodal method are highly 

regular; each cell is solved independently with the same 

algorithm and the cells and the energy groups are fully 

contiguous, which enables branchless calculations and 

coalesced memory accesses. 

Second, the nodal method involves a lot of arithmetic 

operations. In SENM, calculation of coefficients such as 

 ,  , 
D , and 

ic  is computationally intense. However, 

these variables are declared locally and are likely to be 

stored in registers. That is, the nodal kernels have high 

operational intensity and can exploit the local memories. 

The frequent exponential (hyperbolic) calculation in 

the SENM kernels is also where GPUs have strengths. 

GPUs have hardware-level SFUs (special function unit) 

and corresponding fast math functions working in single 

precision, which provides fast approximate estimations 

of some special math functions including exponentials. 

That is, SENM can take more advantage from the GPU 

acceleration than other nodal methods. 

2.2.2 Parallelization and Precision Issues 

Currently, all the routines of the nodal solver, which 

serves as the largest computational hotspot, had been 

ported to GPU. Parallelization is applied for cells and 

energy groups; a Jacobi scheme is applied in energy and 

cells are arranged in red-black ordering so that each 

thread can take an energy group of a cell. 

Additionally, the homogenization routine for CMFD 

acceleration had been ported to GPU so far. From the 

profiling result after the first porting of the nodal solver, 

it was observed that the time portion of the data copy 

between host and device was not negligible, reaching 
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40% of the total nodal solution time. It then turned out 

that copying out the outgoing current array was causing 

unnecessary overheads. Since the outgoing current is 

only used to determine D̂  in the CMFD acceleration, it

was worthwhile to remove the copy of outgoing currents 

by simply calculating the CMFD coupling coefficients 

directly on GPU. Note, however, that eventually all the 

routines of CMFD will be ported to GPU as well; due to 

the cumbersomeness of constructing the linear systems 

in sparse format in parallel on GPU, and considering the 

small time portion of assembly-wise CMFD, the CMFD 

acceleration is temporarily being performed on CPU. 

Since VANGARD targets to be applied in PC-level, 

employing consumer-grade GPUs is of interest. The key 

characteristics of the consumer-grade GPUs is that they 

are specialized for single precision (FP32) arithmetic, as 

graphics visualization does not require high precisions. 

As the result, consumer-grade GPUs have only minimal 

support for double precision (FP64) arithmetic. 

Therefore, single precision is utilized in every places 

of the GPU nodal solver. However, this raises a stability 

issue caused by the hyperbolic functions. The term   

inserted in the hyperbolic functions is proportional to 

the mesh size. In the axial direction where the mesh 

sizes are relatively thick, the hyperbolic function values 

have chance to grow extremely large to the range which 

single precision cannot cover properly. As the result, a 

cascade effect occurs in the coefficient calculations by 

the numerical errors and makes the kernel diverge. 

To resolve this, a clever mixed precision scheme is 

employed. For the radial 2nd order kernels which do not 

suffer from numerical errors, single precision is used. 

On the other hand, precisions are mixed in the axial 4th 

order kernel. For the hyperbolic functions whose double 

precision versions are computationally expensive, single 

precision is used. But for the other arithmetic including 

coefficient calculations, double precision is used. In this 

way, the performance penalty of using double precision 

can be minimized while retaining accuracy and stability. 

Table 1 summarizes the selection of kernel expansion 

orders and precisions in each direction. 

Table 1. Order of kernels and precisions in each direction. 

Direction Radial Axial 

Expansion Order 2 4 

Arithmetic Precision FP32 FP64 

Hyperbolic Precision FP32 FP32 

3. Results

To verify the GPU acceleration capability, NEACRP 

benchmark problems [6] were analyzed with full-core 

configurations and the results were compared with the 

CPU solvers. Five cases including ARO case with T/H 

feedback were analyzed. In this section, consistency of 

the GPU routines with the CPU routines was examined 

and the performance of GPU routines was investigated. 

In addition, sensitivity studies regarding the precisions 

were performed. 

3.1 Accuracy Evaluation 

The soundness of the GPU routines was assessed by 

comparing the critical boron concentrations (CBC) and 

pin powers with the CPU results. Table 2 summarizes 

the results. In all cases, CBCs matched exactly between 

CPU and GPU, and the pin power differences were also 

negligible, showing maximum relative error being lower 

than 0.005%. The peak errors occur at the peripheral 

pins adjacent to the reflector. Except for those locations, 

most pins have almost exact agreement in power, which 

is shown by the RMS values. 

Table 2. Comparison of results between CPU and GPU. 

Case CBC (ppm) 
RMS 

(%) 

Max. Rel. 

∆P (%) 

ARO 1221.98 2.51E-5 3.67E-3 

A1 547.26 1.48E-4 3.29E-3 

A2 1168.89 2.41E-4 4.01E-3 

B1 1256.45 1.25E-4 2.81E-3 

B2 1197.04 3.63E-5 4.19E-3 

3.2 Computing Time Analysis 

Table 3 shows the computing resources used for the 

calculations. CPU calculation was run in parallel using 

OpenMP with two CPU processors containing 10 cores. 

GPU calculation was performed with a single consumer-

grade GPU. 

Table 3. Computing resources. 

Type Processor 

CPU Intel Xeon E5-2630 v4 (2EA) 

GPU NVIDIA GeForce RTX 2080 Ti 

Figure 1 illustrates the relative computing time of the 

nodal solvers with different nodal kernel precisions with 

respect to the full single precision calculation. Note that 

all the operations outside the nodal kernel (e.g. source 

calculation) is done with single precision. It is obvious 

that using full single precision has the best performance, 

but it sacrifices stability and is not considered optimal. 

Thus, the suggested mixed precision scheme, which is 

the fastest except for the full single precision case, is the 

optimal choice. Even though it loses the performance by 

15%, it is still significantly faster than the blinded use of 

double precision, and this shows the effectiveness of the 

adaptive selection of precision. 

With the optimal choice of precisions, the GPU nodal 

calculation time was compared to the CPU calculation 

using single core and 20 cores, which are summarized in 

Table 4. Compared to a single CPU core, a single GPU 

can achieve over 210 times of speedup, and the speedup 
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is still 20 times compared to 20 CPU cores due to the 

limited parallel efficiency of CPU. This demonstrates 

that the GPU acceleration was very successful and the 

developed routines are highly efficient. 

Figure 1. Effect of precisions on the nodal calculation time. 

Table 4. Nodal calculation time comparison with CPU. 

Case 
CPU (s) 

GPU (s) Speedup 
1 Core 20 Cores 

ARO 1349.5 127.5 6.41 210.7 19.9 

A1 1103.9 103.1 5.19 212.7 19.9 

A2 1350.5 123.8 6.35 212.8 19.5 

B1 962.1 88.6 4.52 212.8 19.6 

B2 1268.8 116.4 5.94 213.5 19.6 

Figure 2 compares the computing time share of CPU 

and GPU calculations for the A2 case. The nodal solver, 

which tended to dominate the CPU calculation by taking 

93% of the total computing time, is reduced to less than 

half of the total time by GPU acceleration. Still, the 

speedup in terms of total computing time is limited to 

9.5 times due to the calculations still performed on 

CPUs, such as T/H feedback. It is thus expected that the 

total computing time will be further reduced by applying 

the GPU acceleration to the remaining calculations. 

Figure 2. Computing time share comparison 

between CPU (left) and GPU (right).  

4. Conclusions

In order to perform pinwise nodal core simulations at 

PC-level practically, GPU acceleration was applied to 

the pinwise nodal solver. The compute-intensive 

characteristics of the nodal method makes it suitable for 

the GPU acceleration. 

In this work, pinwise one-node SP3 SENM kernels 

were accelerated on GPU. A radial 2nd – axial 4th order 

hybrid expansion was used for efficient pinwise core 

simulation. A consumer-grade GPU was chosen as the 

acceleration platform considering that the code targets 

to be used in PC environments. The use of consumer-

grade GPUs necessitated using single precision, which 

in turn caused stability issues induced by the numerical 

errors in treating the large hyperbolic terms in the axial 

kernel. This was resolved by adaptively using double 

precision in the axial kernel such that the performance 

regarding both stability and time cost is optimal. 

The soundness and the performance of the developed 

GPU acceleration module were assessed by solving the 

NEACRP benchmark problems. The relative pin power 

errors between CPU and GPU solvers did not exceed 

0.005% while a single GPU achieved 20 times speedup 

over 20 CPU cores in the nodal calculation. 

Still, this work is preliminary and substantive amount 

of works need to be done. Especially, treating the group 

constants on GPU is necessary. Other calculations such 

as T/H feedback and CMFD acceleration should be also 

ported to GPU. Namely, more extensive application of 

GPU acceleration remains as the future work. 
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