
Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Feasibility of Fast Pinwise Core Simulation Using GPUs

Seoyoon Jeon, Namjae Choi, and Han Gyu Joo*

Department of Nuclear Engineering, Seoul National University,

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

Assembly-wise two-step core calculation using nodal

methods has been adopted as the primary core design

method due to its low computing cost compared to the

direct whole-core calculation (DWCC). It compromises

accuracy for computing time. Nonetheless the solution

accuracy is regarded sufficient for the practical

applications in the industry because the predictions

determined with bias and uncertainties are within the

allowed range around the measured values.

However, the need for obtaining detailed pin-level

solutions is continuously increasing due to the tightened

safety regulations and it becomes more difficult to meet

the design criteria with the conventional two-step

method. Yet none of the high-fidelity core analysis

codes employing DWCC is able to meet the computing

cost requirements for the nuclear design and analyses

which involves repeated core calculations for fuel

loading pattern search and design data generation. In

this regard, pinwise two-step calculations are considered

as a compromise for DWCCs. However, even the core

calculation using the pin-homogenized multigroup

(MG) cross sections (XSs) is still computationally

demanding to be executed practically on personal

computers (PCs), thus a proper measure to reduce the

computing time should be taken.

In this regard, we decided to explore the use of GPUs

for the pinwise nodal calculation. Modern consumer-

grade GPUs equipped in PCs come out with significant

computing power, and we already have successfully

applied GPU acceleration to the direct whole core

calculation code nTRACER [1] and the Monte Carlo

code PRAGMA [2] that achieved remarkable speedups.

Such experiences, along with the preliminary works of

SCOPE2 [3] on GPU acceleration, gave us the

confidence of the feasibility of accelerating the pinwise

nodal calculation with GPUs.

We are developing VANGARD (Versatile Advanced

Neutronics code for GPU-Accelerated Reactor Designs)

which is a GPU-based pinwise nodal design code, and

this work is the initial phase of the development. This

paper will introduce the nodal algorithm in VANGARD

and the principles of GPU acceleration, along with some

preliminary results obtained with a benchmark problem.

2. GPU-based Pinwise Nodal Calculation

VANGARD employs Simplified P3 (SP3) form of the

source expansion nodal method (SENM) [4, 5]. SENM

was chosen as the primary nodal kernel in VANGARD

in that the existence of hyperbolic terms helps capturing

severe flux gradients in the pinwise multi-group core

calculation. In this section, the formulation of SENM is

briefly explained and the strategies of GPU acceleration

are described. Detailed derivations and the definition of

coefficients can be found in the references.

2.1 One-node SENM Kernel for Pinwise Calculation

In the following, subscripts for groups and directions

will be omitted for brevity. Transverse-integrated one-

dimensional within-group neutron diffusion equation is

written as follows:
2

2 2

4
() () ().r

D d
Q

h d
    


   (1)

In SENM, as the name implies, the source term Q is

expanded up to 4th order using Legendre polynomials

as:
4

0

() () () () ()i i

ieff

Q S L q P
k


     



    . (2)

Plugging Eq. (2) in Eq. (1) and analytically solving for

the flux yields the following solution:
4

0

() sinh() cosh() ()i i

i

A B c P    


   (3)

where

1 1 3 2 2 42 2

3 3 4 4

,
2

1 15 1 35
, ,

/ , / .

r

r r

r r

h

D

c q q c q q

c q c q



 




  
     
    

   

 (4)

The flux term in Eq. (3) is also expanded using the

Legendre polynomials as follows:
4

1

() ()i i

i

a P   


  (5)

where

1 1

2 2 2 2

3 3 2 2

4 4 2 2 2 4

3 sinh()
cosh() ,

3cosh() 3 sinh()
5 1 ,

7 15 15 sinh()
1 cosh() 6 ,

5 21 45 105 sinh()
9 2 cosh() 1

a c A

a c B

a c A

a c




 

 

 




  




   

 
   

 

  
      

  

    
         

    

    
         

    
.B



(6)

Once the coefficients are obtained, node average flux

is calculated as follows:

 

  2

, ,

4

, ,

1

2

3 (3)

(10 (10))

.

u l r

u u

u u u u

D

u x y z
u u u

u u

r D

u x y z

J J

s c

c



  

  




 





  
  

  
      
  
    

  
  


  




 (7)

With the updated node average flux, outgoing current

can be determined as follows:

1
(1) (1)

2

1
((1)) (1),

2

1
(1) (1)

2

1
((1)) (1).

2

r

s c P P

l

s c P P

J J

A B J

J J

A B J



    



    





 

    

   

       

(8)

The SP3 SENM equations are defined for the summed

flux and the 2nd flux moment. The solution procedure is

analogous to the diffusion case except for some changes

in the definitions of coefficients: the value of  is set to

1/4 and 7/16 for the summed flux and the 2nd moment

equations, respectively, and diffusion coefficients and

removal cross sections are defined differently for the 2nd

moment equation. The SP3 SENM equations are given

as follows:
2

0

0 0, 0 02 2

2

2

2 2, 2 22 2

4 ˆ ˆ ,

4

r g

r g

D d
Q

h d

D d
Q

h d

 


 


   

   

(9)

where

0 0 2

0 2

0 2

ˆ 2 ,

1 3
, ,

3 7

4 5
, .

3 3

tr t

r r r r t

D D

   

 
 

       

 (10)

The source terms are also defined separately for the

summed flux and the 2nd moment equations:

0 2 0

2 0 2

2 ,

2 2 ˆ .
3 3

r

r

Q s L

Q s L





   

    
(11)

The SENM kernel can be derived up to the 4th order,

but for the solution of radial direction where the mesh

size is small, the expansion is truncated at the 2nd order.

Applying the 4th order expansion for the pin-sized mesh

is an overkill and induces stability issues [5]. On the

other hand, axial meshes are thick and the full 4th order

kernel is used in the axial solution. That is, kernels of

different orders are used in hybrid for efficient three-

dimensional pinwise nodal core calculation.

2.2 GPU Acceleration

2.2.1 Suitability of SENM for GPU Acceleration

GPU is a subset of vector processor and is specialized

at SIMD (Single Instruction Multiple Data) parallelism;

namely, adjacent threads should perform same operation

on coalesced data. A GPU contains substantial number

of simple arithmetic cores, which can deliver significant

floating point computing power. However, it is bounded

by the performance of the relatively slow main memory,

so a GPU contains several types of small but fast local

memories, such as register, to buffer the main memory

accesses. Therefore, the number of operations per each

main memory access (= operational intensity) should be

maximized to have high performance. To summarize, an

algorithm should satisfy the following properties to be

efficiently accelerated on GPUs:

1. Branchless (single instruction)

2. Contiguousness of data access (coalescing)

3. Exploitation of local variables (local memory)

4. Compute-intensive (operational intensity)

The properties of the nodal method make it suitable

for the GPU acceleration. First of all, the data structure

and the iteration scheme of the nodal method are highly

regular; each cell is solved independently with the same

algorithm and the cells and the energy groups are fully

contiguous, which enables branchless calculations and

coalesced memory accesses.

Second, the nodal method involves a lot of arithmetic

operations. In SENM, calculation of coefficients such as

 ,  ,
D , and

ic is computationally intense. However,

these variables are declared locally and are likely to be

stored in registers. That is, the nodal kernels have high

operational intensity and can exploit the local memories.

The frequent exponential (hyperbolic) calculation in

the SENM kernels is also where GPUs have strengths.

GPUs have hardware-level SFUs (special function unit)

and corresponding fast math functions working in single

precision, which provides fast approximate estimations

of some special math functions including exponentials.

That is, SENM can take more advantage from the GPU

acceleration than other nodal methods.

2.2.2 Parallelization and Precision Issues

Currently, all the routines of the nodal solver, which

serves as the largest computational hotspot, had been

ported to GPU. Parallelization is applied for cells and

energy groups; a Jacobi scheme is applied in energy and

cells are arranged in red-black ordering so that each

thread can take an energy group of a cell.

Additionally, the homogenization routine for CMFD

acceleration had been ported to GPU so far. From the

profiling result after the first porting of the nodal solver,

it was observed that the time portion of the data copy

between host and device was not negligible, reaching

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

40% of the total nodal solution time. It then turned out

that copying out the outgoing current array was causing

unnecessary overheads. Since the outgoing current is

only used to determine D̂ in the CMFD acceleration, it

was worthwhile to remove the copy of outgoing currents

by simply calculating the CMFD coupling coefficients

directly on GPU. Note, however, that eventually all the

routines of CMFD will be ported to GPU as well; due to

the cumbersomeness of constructing the linear systems

in sparse format in parallel on GPU, and considering the

small time portion of assembly-wise CMFD, the CMFD

acceleration is temporarily being performed on CPU.

Since VANGARD targets to be applied in PC-level,

employing consumer-grade GPUs is of interest. The key

characteristics of the consumer-grade GPUs is that they

are specialized for single precision (FP32) arithmetic, as

graphics visualization does not require high precisions.

As the result, consumer-grade GPUs have only minimal

support for double precision (FP64) arithmetic.

Therefore, single precision is utilized in every places

of the GPU nodal solver. However, this raises a stability

issue caused by the hyperbolic functions. The term 

inserted in the hyperbolic functions is proportional to

the mesh size. In the axial direction where the mesh

sizes are relatively thick, the hyperbolic function values

have chance to grow extremely large to the range which

single precision cannot cover properly. As the result, a

cascade effect occurs in the coefficient calculations by

the numerical errors and makes the kernel diverge.

To resolve this, a clever mixed precision scheme is

employed. For the radial 2nd order kernels which do not

suffer from numerical errors, single precision is used.

On the other hand, precisions are mixed in the axial 4th

order kernel. For the hyperbolic functions whose double

precision versions are computationally expensive, single

precision is used. But for the other arithmetic including

coefficient calculations, double precision is used. In this

way, the performance penalty of using double precision

can be minimized while retaining accuracy and stability.

Table 1 summarizes the selection of kernel expansion

orders and precisions in each direction.

Table 1. Order of kernels and precisions in each direction.

Direction Radial Axial

Expansion Order 2 4

Arithmetic Precision FP32 FP64

Hyperbolic Precision FP32 FP32

3. Results

To verify the GPU acceleration capability, NEACRP

benchmark problems [6] were analyzed with full-core

configurations and the results were compared with the

CPU solvers. Five cases including ARO case with T/H

feedback were analyzed. In this section, consistency of

the GPU routines with the CPU routines was examined

and the performance of GPU routines was investigated.

In addition, sensitivity studies regarding the precisions

were performed.

3.1 Accuracy Evaluation

The soundness of the GPU routines was assessed by

comparing the critical boron concentrations (CBC) and

pin powers with the CPU results. Table 2 summarizes

the results. In all cases, CBCs matched exactly between

CPU and GPU, and the pin power differences were also

negligible, showing maximum relative error being lower

than 0.005%. The peak errors occur at the peripheral

pins adjacent to the reflector. Except for those locations,

most pins have almost exact agreement in power, which

is shown by the RMS values.

Table 2. Comparison of results between CPU and GPU.

Case CBC (ppm)
RMS

(%)

Max. Rel.

∆P (%)

ARO 1221.98 2.51E-5 3.67E-3

A1 547.26 1.48E-4 3.29E-3

A2 1168.89 2.41E-4 4.01E-3

B1 1256.45 1.25E-4 2.81E-3

B2 1197.04 3.63E-5 4.19E-3

3.2 Computing Time Analysis

Table 3 shows the computing resources used for the

calculations. CPU calculation was run in parallel using

OpenMP with two CPU processors containing 10 cores.

GPU calculation was performed with a single consumer-

grade GPU.

Table 3. Computing resources.

Type Processor

CPU Intel Xeon E5-2630 v4 (2EA)

GPU NVIDIA GeForce RTX 2080 Ti

Figure 1 illustrates the relative computing time of the

nodal solvers with different nodal kernel precisions with

respect to the full single precision calculation. Note that

all the operations outside the nodal kernel (e.g. source

calculation) is done with single precision. It is obvious

that using full single precision has the best performance,

but it sacrifices stability and is not considered optimal.

Thus, the suggested mixed precision scheme, which is

the fastest except for the full single precision case, is the

optimal choice. Even though it loses the performance by

15%, it is still significantly faster than the blinded use of

double precision, and this shows the effectiveness of the

adaptive selection of precision.

With the optimal choice of precisions, the GPU nodal

calculation time was compared to the CPU calculation

using single core and 20 cores, which are summarized in

Table 4. Compared to a single CPU core, a single GPU

can achieve over 210 times of speedup, and the speedup

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

is still 20 times compared to 20 CPU cores due to the

limited parallel efficiency of CPU. This demonstrates

that the GPU acceleration was very successful and the

developed routines are highly efficient.

Figure 1. Effect of precisions on the nodal calculation time.

Table 4. Nodal calculation time comparison with CPU.

Case
CPU (s)

GPU (s) Speedup
1 Core 20 Cores

ARO 1349.5 127.5 6.41 210.7 19.9

A1 1103.9 103.1 5.19 212.7 19.9

A2 1350.5 123.8 6.35 212.8 19.5

B1 962.1 88.6 4.52 212.8 19.6

B2 1268.8 116.4 5.94 213.5 19.6

Figure 2 compares the computing time share of CPU

and GPU calculations for the A2 case. The nodal solver,

which tended to dominate the CPU calculation by taking

93% of the total computing time, is reduced to less than

half of the total time by GPU acceleration. Still, the

speedup in terms of total computing time is limited to

9.5 times due to the calculations still performed on

CPUs, such as T/H feedback. It is thus expected that the

total computing time will be further reduced by applying

the GPU acceleration to the remaining calculations.

Figure 2. Computing time share comparison

between CPU (left) and GPU (right).

4. Conclusions

In order to perform pinwise nodal core simulations at

PC-level practically, GPU acceleration was applied to

the pinwise nodal solver. The compute-intensive

characteristics of the nodal method makes it suitable for

the GPU acceleration.

In this work, pinwise one-node SP3 SENM kernels

were accelerated on GPU. A radial 2nd – axial 4th order

hybrid expansion was used for efficient pinwise core

simulation. A consumer-grade GPU was chosen as the

acceleration platform considering that the code targets

to be used in PC environments. The use of consumer-

grade GPUs necessitated using single precision, which

in turn caused stability issues induced by the numerical

errors in treating the large hyperbolic terms in the axial

kernel. This was resolved by adaptively using double

precision in the axial kernel such that the performance

regarding both stability and time cost is optimal.

The soundness and the performance of the developed

GPU acceleration module were assessed by solving the

NEACRP benchmark problems. The relative pin power

errors between CPU and GPU solvers did not exceed

0.005% while a single GPU achieved 20 times speedup

over 20 CPU cores in the nodal calculation.

Still, this work is preliminary and substantive amount

of works need to be done. Especially, treating the group

constants on GPU is necessary. Other calculations such

as T/H feedback and CMFD acceleration should be also

ported to GPU. Namely, more extensive application of

GPU acceleration remains as the future work.

REFERENCES

[1] N. Choi, J. Kang, H. G. Joo, “Preliminary Performance

Assessment of GPU Acceleration Module in nTRACER,”

Transactions of the Korean Nuclear Society Autumn Meeting,

Yeosu, Korea, Oct. 25-26 (2018).

[2] N. Choi, K. M. Kim, H. G. Joo, “Initial Development of

PRAGMA – A GPU-Based Continuous Energy Monte Carlo

Code for Practical Applications” Transactions of the Korean

Nuclear Society Autumn Meeting, Goyang, Korea, Oct. 24-25

(2019).

[3] Y. Kodama, M. Tatsumi, Y. Ohoka, “Study on GPU

Computing for SCOPE2 with CUDA,” Proceedings of the

International Conference on Mathematics and Computational

Methods Applied to Nuclear Science and Engineering (M&C

2011), Rio de Janeiro, Brazil, May 8-12 (2011).

[4] J. I. Yoon, H. G. Joo, “Two-Level Coarse Mesh Finite

Difference Formulation with Multigroup Source Expansion

Nodal Kernels,” Journal of Nuclear Science and Technology

45(8), pp. 668-682 (2008).

[5] H. Hong, H. G. Joo, “Source Expansion Nodal Kernel for

Multi-Group Pin-by-Pin SP3 Core Calculation,” Transactions

of the Korean Nuclear Society Spring Meeting, Jeju, Korea,

June 9-10 (2020).

[6] H. Finnemann, A. Galati, “NEACRP 3-D LWR CORE

TRANSIENT BENCHMARK – Final Specifications,”

NEACRP-L-335 (Revision 1), OECD Nuclear Energy Agency

(1992).

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

