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<Objectives of the study>

Development of Low Temperature Fuel (*800K) performance evaluation code of
the long life Micro LFR

+ Thelead-cooled fast reactor (LFR) is considered as one of the most promising new generation fast
nuclear reactors.

« Three reference systems were adopted by LFR-provisional System Steering Committee (pSSC)
that include ELFR, ALFRED (EU), BREST-OD-300 (Russia) and SSTAR (USA) and they are utilizing
MOX or mixed nitride fuel.

« The preliminary design of ultra-long life micro LFR is currently being studied in Korea as a nuclear
propulsion system for icebreakers that has a linear heat generation rate as low as 1/10 scale than
conventional fast reactor.

At low temperatures under 1200K, fuel irradiation properties change greatly.

« Therefore, development of a new fuel performance analysis code for low temperature fuel in LFR
Is essential.
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Simulation Condition 4

Table 1. Fuel rod and LFR core design in this study

10bar

Coolant properties
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Coolant inlet/outlet
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Fuel rod outer diameter /
Cladding thickness(mm) 20.0/0.95
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Fission gas release 6

< Calculation results>
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Fig. 5. Threshold temperature for fission gas release and bubble formation as a function of burnup. Broken curve: Threshold 0.00 1 T T T T T T T T T
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 Threshold temp. for fission gas release Ts = 1000 °C for 50 GWd/tU

 Even considering the high burnup structure of the rim part, fission gas
release will hardly occur

* 0.75% fission gas release were calculated by default low temperature fission gas
release model =» reasonable

5 F = fission gas release fraction
— = T =t BU = local burnup in GWd/MTU
F=T7Tx10"BU+C C = 0 for BUZ 40 GWd/MTU

0.01(BU-40)/10: for burnup > 40 GWd/MTU and F = 0.05
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1) Ukai, S., et al. Journal of Nuclear Materials 151.2 (1988): 209-218:




Fuel Swelling 7

« Low fission gas release = high gaseous swelling

. When the temperature of nuclear fuel is low, fission gas does not grow sufficiently at the grain boundary and
is destroyed by fission fragments.

. Therefore, in the case of fuel operated at a low temperature below 1200°C and high burnup, fission gas is
hardly released and exists in the form of a supersaturated solid solution in the nuclear fuel.

. This causes high swelling of nuclear fuel, and it has been calculated from the existing literature that a
volume expansion of 0.1% per 1 GWd/tU occurs (2).
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Cladding Swelling :
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. Data of swelling induced diametral strain of Ti modified type 316 steel at 400°C were implemented by
polynomial fitting in this code.

. The fitting function shows a good agreement with the original data.

— N”?\:,I?éfi‘;‘l’s' 4) M.B. Toloczko, F.A. Garner, C.R. Eiholzer, Determination of the creep compliance
and creep-swelling coupling coefficient for neutron irradiated titanium-modified I(AI ST
stainless steels at ~ 400°C, J. Nucl. Mater. (1992).
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Fuel temperature 10

Fuel Hottest Region (T coolant = 623K) (a) 1o —— S
1100 T T T T T T 1600 24 h after start
g 1400
1000 -+ T % / — pellet centre
) ] g 1200 pellet surface
Fuel centerline temperature E
900 -+ . & o0
< ] 800
o 800 4 -60 -40 20 0 20 40 60
5 Core axial co-ordinate {cm)
" Fuel outer surface temperature 1
—_ 00
o 700 /\/ 7] (b) Hottest rod Fo—
g ] 24 hours afier start — . —
@ = — r/:j: | —
F 600 Cladding inner surface temperature . & 750 T
e T
3 L —
500 - n g' 700 4= — o~ clad inner surface
ﬁ g —+= clad outer surface
/ = coolant
400 T T T T T 650 | |
0 10 20 30 40 50 80 -60 -40 . -20 . 0 i r'_’,ﬂ 40 60
ore axial co-ordinate (cm
Rod average burnup(GWd/tU) i coordinate fem)

Fig. 3. Axial distribution of temperature in the fuel column {a) and in the cladding 5)
(b) of the hottest fuel rod at start.

« Maximum 1000K centerline temperature

* Very low compared to about 1800K, the design operating temperature of the existing
European ELSY project LFR

Nuclear Fuel
”~ Materials 5) Sobolev, Vitaly, E. Malambu, and H. Ait Abderrahim.

"Design of a fuel element for a lead-cooled fast reactor." I(AI ST
Journal of Nuclear Materials 385.2 (2009): 392-399.
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<Gap size evolution>
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Mechanical analysis
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* Increase of plenum pressure due to void volume decrease
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« After 40GWd/tU, plenum pressure decrease due to large expansion of the cladding

=> increases the gap, total void volume
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Mechanical analysis 13

= (Cladding integrity 10cm plenum length, Tmm cladding thickness
- Cumulative damage fractions (CDF) should be less than 10-

- Rupture time was calculated by LMP parameter

LMP =T[16.0 + log1o(tg)] = 1000 X [a + b(log,o(oy)) + c(log,o(oy))?]

tg = rupture time (days),oy = hoop stress (MPa), T = cladding temperature (573 K)

CDF — t E Parameters for Modified
0 tR creep ruture correlation type 316
oy > 110MPa a 5.8640
b 16.161
c —4.7730
oy = 110MPa a 25.752
b —3.3240
c 0.0000

Table 5 Parameters for in-reactor creep rupture correlation

- CDF = 3.80*10-"® (due to very low temperature, low fission gas release)
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* Only thermal analysis results were cross-checked by COMSOL

» Due to the larger initial gap in FRAPCON calculation (thermal expansion at the
beginning) higher pellet surface temperature in FRAPCON results.

« FRPCON simulation was in good agreement with both hand calculation and
COMSOL
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Conclusions

* LWR fuel performance analysis code FRAPCON-4.0 was modified to be applied to
micro LFR

« Material properties of the cladding, coolant and low temperature void swelling
characteristics of the fuel were changed.

« It has been shown that fuel can be maintained at temperatures as low as 1000 K or
less for 40 years of operation.

« In addition, the design of the nuclear fuel and cladding does not contact during the
life time, thereby preventing cladding failure due to fuel cladding mechanical
interaction (FCMI).
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