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1. Introduction

Artificial Neural Networks (ANN) proved their 

effectiveness in solving various complex problems in 

numerous fields of knowledge, including nuclear 

reactor design and analysis. One of the most popular 

ways to use ANN in nuclear field is to replace 

numerically accurate reactor design computer codes 

with surrogate models that are capable of predicting 

target output parameters at a much faster speed. The 

trade-off of using ANN in this case is the uncertainty in 

the trained model that introduces an error in the final 

result. However, in some cases the accuracy 

requirement is not as strict as the requirement to obtain 

a result quickly. For example, a new reactor design 

requires many hundreds of human hours in order to find 

an optimal or nearly optimal fuel design and fuel 

loading pattern (LP) configuration. An optimal LP 

search involves numerous trials of possible LP 

configurations using computationally intensive and 

time-consuming reactor design codes. Some of those 

LPs could have been filtered out using ANN prior to 

running a more accurate computer code.  

In our previous writings [1], we discussed the 

applicability of a convolutional neural network (CNN) 

to prediction of various core design parameters. Though 

this approach is quite efficient for predicting various 

safety and design-related parameters, the trained ANN 

model is not versatile, i.e. it cannot be used for a 

different reactor type with a different number of fuel 

assemblies (FA) or different fuel configuration. To 

solve this problem, we can use a hybrid approach, 

which is based on the idea of finding the most 

computationally demanding parts and replacing them 

with an ANN model. 

In this study, we are working with our in-house nodal 

diffusion code RAST-K [2]. As explained in the 

reference, this code is part of a two-step computation 

system. The first step is to generate macroscopic cross-

sections (XS) using some lattice physics code. The 

second step is to solve a nodal diffusion equation 

implemented in RAST-K using those XS. The most 

computationally intensive component in this system is 

the first – XS generation – part of the process. In 

addition to that, the core geometry is being specified in 

the RAST-K part of the two-step code system, which 

means that we can replace the lattice code with a 

surrogate ANN model and predict the XS set required 

for solving a nodal diffusion equation regardless of the 

target core geometry.  

2. Model description

The idea of XS generation using ANN is not new. 

The authors of the ref. [3] applied various machine 

learning (ML) techniques for predicting XS data for a 

certain reactor model. However, they are not using 

some of typical lattice code input parameters (such as 

fuel enrichment, fuel geometry) for training their 

models. Though their result shows very small difference 

with the actual solution, it might be limited by the 

particular fuel rod arrangement and enrichment that was 

implicitly built into their training data.  

In order to avoid those limitations, we decided to 

apply the input parameters that are very similar to those 

used in a typical lattice physics code. However, we 

introduce our own limitations that we are planning to 

address in future studies. In particular, we are only 

modeling XS data for fresh fuel, and we are testing the 

XS data only for the beginning of cycle (BOC) 

calculation in our code RAST-K. The training and 

testing datasets were generated using our in-house 

deterministic code STREAM [4]. We modelled various 

fuel enrichments and fuel rod locations in the core as 

shown in Figure 1. At the same time, we did not model 

fuel with burnable poisons and control rods in this 

study. Finally, we did not add the variable fuel rod pitch 

and fuel pellet thickness as we are planning to address 

this in our future works. 

The ANN model of our choice is a deep neural 

network (DNN) with 5 fully connected layers. Though 

we are not using any more complicated techniques such 

as CNN, we decided to apply the Barcode model [1] for 

our input data arrangement, listing all fuel rods in one 

straight line while keeping a strict order of sequence. 

The FA geometry in our study is a typical 16*16 

rectangular FA. In order to address the guide tube input 

in this geometry, we decided to replace the guide tubes 

with equivalent fuel rod cells that have no fuel. As a 

result, our input parameters are listed in one line as 

follows: temperature of fuel (average), temperature of 

moderator, boron concentration, and a list of all fuel rod 

enrichments given in a one-line sequence as they appear 

in one octant of a FA shown in Figure 1. The output 

parameters are the following: 2-group diffusion 

coefficients, 2-group scattering XS, 2-group absorption 

XS, 2-group fission XS, 2-group nu-fission XS, 2-group 

kappa-fission XS, kinf. After the model was trained, an 

independent testing set of XS was modelled and 

predicted, and later used in RAST-K input for 

comparing the actual outcome of using predicted XS. 
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Fig. 1. Geometry of fuel assemblies used in this study. 

3. Simulation and results

The training dataset consists of 108,000 unique FA 

samples with non-duplicate input parameters as 

explained in the previous section. The loss function 

used in this model is Huber loss [5]. Adam [6] 

optimizer was chosen for having a dynamically 

changing learning rate. In order to avoid overfitting, an 

additional 13,000 sample validation dataset was 

applied. The best model over 2,000 training epochs was 

saved based on the lowest value of the loss function for 

validation dataset. 

For testing, an independent unseen dataset consisting 

of 13,800 FA input/output samples was prepared. For 

evaluation of the testing prediction results, the values of 

Mean Relative Error (%) for each predicted parameter 

were calculated. The entire model was built using 

TensorFlow [7]. 

As stated in the previous section, after the XS data 

was predicted, it was applied to RAST-K input files 

using automated Python scripts. Two sets of input data 

were created for each testing sample. RAST-K 

calculation with pre-defined XS data for BOC takes less 

than 1 second per input file, which shows the reasoning 

behind leaving the nodal code calculation instead of 

making an entire prediction using a more complex 

ANN. The time of XS prediction was found around 1 

second or lower for all 13,800 testing XS sets. At the 

same time, the XS calculation using a lattice code could 

take up to a minute for a single set of input parameters, 

and much longer than that for hundreds or thousands 

sets of XS (known as branch calculations) required for a 

nodal code. 

For this study, we decided to model a reactor core 

similar to OPR-1000 core. However, since XS data is 

generated regardless the reactor core type, we could 

apply our ANN model for predicting XS for any reactor 

that is using 16*16 FA type. In future works, we are 

planning to expand our study on XS generation for 

burnup calculation as well as to add other types of 

geometry etc., as was explained in the section 2 of this 

paper. The RAST-K model geometry used in this study 

is shown in Figure 2. It consists of FAs of the same type 

without axial and radial reflectors. The boundary 

conditions (BC) for the model are: fully reflected for 

the western and the northern directions, vacuum for all 

other directions. The results of the XS prediction and 

RAST-K simulation are shown in Table I.  

Fig. 2. A quarter-core OPR-1000 input geometry for 

RAST-K. All used fuel assemblies are of the same type. 
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Table I: Results of DNN XS prediction and RAST-K 

simulation. 

Parameter MRE, % 

XS data prediction – DNN vs STREAM 
Diffusion coefficient D1 0.184 

Diffusion coefficient D2 0.092 

Macroscopic absorption XS group 1 0.111 

Macroscopic absorption XS group 2 0.156 

Macroscopic scattering XS group 1 0.141 

Macroscopic fission XS group 1 0.113 

Macroscopic fission XS group 2 0.087 

nu*Macroscopic fission XS group 1 0.062 

nu*Macroscopic fission XS group 2 0.181 

kappa*Macroscopic fission XS group 1 0.139 

kappa*Macroscopic fission XS group 2 0.258 

Infinity multiplication factor kinf 0.063 

RAST-K Simulation – comparison of XS 
Multiplication factor keff 0.203 

Excess reactivity rho 0.016 

As shown in Table I, the results of XS prediction stay 

way below 1%. The result of RAST-K simulation also 

stays close to the reference obtained using XS generated 

in lattice code. Finally, the values of power distribution 

were determined during RAST-K calculation. The 

relative difference in power distribution for the case 

with the highest keff difference is shown in Figure 3. 

Fig. 3. Relative difference (%) in power distribution 

calculated using RAST-K for the XS sets based on the 

STREAM-generated XS vs the ANN-generated XS. 

The values of power distribution indicate much lower 

difference than the previously determined values of keff. 

All in all, the results demonstrate that it is possible to 

use XS data generated using ANN for calculations that 

need to be done quickly and do not require an accurate 

result. Our nearest goal for future works is to add 

variable FA geometry and to expand our XS prediction 

model for predicting XS for various burnup points. 

4. Conclusions

In this study, we performed a preliminary study on 

generating macroscopic XS data for our nodal code 

RAST-K using a DNN model. We found that XS data 

could be predicted using a simple ANN model and 

input parameters common for a lattice physics code. 

The advantage of using ANN is the speed of XS 

prediction, which is noticeably faster than a comparable 

calculation using a deterministic code. The mean 

relative difference of predicted XS data against the 

calculated XS data was found much below 1%, and the 

eigenvalue calculation using the predicted data showed 

the difference below 1% compared to the eigenvalue 

calculated with the actual XS data. The relative 

difference for the power distribution values was found 

noticeably lower than the one for the eigenvalue 

calculation.  This result could be appealing for some 

purposes, as we discussed in the Introduction of this 

paper. 

In our future studies, we are planning to add other 

types of FAs, burnable poison rods/Gadolinia rods, 

control rods, and improve our neural network model so 

that it could generate XS data for burnup and transient 

calculations. 
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