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1. Introduction

The trigonal node based Analytic Function Expansion 

Nodal (AFEN) method has been developed to deal with the 

asymmetric inhomogeneity inside the hexagonal fuel 

assembly. Often, this inhomogeneity caused by burnable 

absorbers or control rods loaded asymmetrically within the 

assembly is handled by a hexagonal node based nodal 

method after being homogenized throughout the hexagonal 

assembly. However, such handling inevitably causes the 

homogenization error which is sometimes unacceptable in 

the reactor design.  

The AFEN method which was originally developed for 

rectangular geometry [1] and then expanded to hexagonal 

geometry [2-4] is attempted for the first time in this paper 

for triangular geometry. Therefore, this paper will have a 

special meaning of completing the final puzzle to 

encompass all AFEN methods for all the important 

geometries of reactor physics. Given that the number of 

nodes increases by six times compared to the hexagonal 

method, the trigonal method can be the original AFEN 

method [1-4] rather than the refined AFEN method [5]. The 

former uses only the neutron flux and the latter uses both the 

neutron flux and the flux moment as the nodal unknown at 

an interface. For a reactor core consisting of N hexagonal 

assemblies, there are N nodes and 3N interfaces in the 

hexagonal nodal method, whereas 6N nodes and 9N 

interfaces in the trigonal nodal method. For this core, the 

hexagonal refined AFEN method will have 6N interface 

unknowns, whereas the trigonal original AFEN method will 

have 9N interface unknowns. Therefore, we expect that the 

trigonal original AFEN method without interface flux 

moments provides better accuracy than the hexagonal 

refined AFEN method with interface flux moments. 

The trigonal AFEN method developed in this paper is the 

one based on the response matrix method which is known 

to be numerically efficient and parallel computation friendly 

[6]. The response matrix AFEN method uses the interface 

partial currents as nodal unknowns instead of the interface 

fluxes. A triangular nodal response matrix formulation 

based on the polynomial flux expansion can be found in 

Reference [7]. 

This paper presents the results of a two-dimensional 

reactor core analysis using the proposed method. The main 

numerical characteristics will remain almost the same even 

if it is expanded to three dimensions. 

2. Methodology

Deriving the AFEN Response Matrix which expresses 

the outgoing interface partial currents into the incoming 

interface partial currents has two steps for convenience. In 

the first step, the AFEN single node is solved to obtain the 

relationship between the interface fluxes and the interface 

currents. In the second step, the response matrix is derived 

by replacing the interface fluxes and interface currents in 

this relationship with the incoming and outgoing interface 

partial currents.  

Since the two step procedure is similar to that described 

in Reference [6], we follow it with a lots of descriptions 

overlapping with the reference. 

2.1   AFEN Solution of Single-Node Problem 

2.1.1 Intranodal Flux Expansion 

Solving the single trigonal node problem with the 

boundary condition of three interface currents by the 

AFEN method starts from expending the intranodal flux 

distribution into analytic expansion basis functions. We 

can easily obtain the intranodal flux expansion 

symmetrical to the 120 degrees apart three-side 

directions of a trigonal node shown in Fig. 1 by taking 

the flux expansion of the form below as introduced in the 

hexagonal AFEN method [2,6]. 

𝛟(𝒙, 𝒚) = 𝛗(𝒙, 𝒚) + 𝛗(𝒖, 𝒗) + 𝛗(𝒑, 𝒒)         (1) 

Fig. 1. Coordinate systems and nodal unknowns 

Determining the analytic expansion basis function 

(x,y) is not as straightforward as in the rectangular or 

hexagonal AFEN method. Since we have three interface 

currents in which the flux expansion is expressed, we run 

into the dilemma of having to choose one between even 

and odd functions as the basis function (x,y) in one of 

three directions. This is quite awkward and even 

unphysical considering that the basis function 

harmoniously consists of both even and odd functions in 

the rectangular or hexagonal AFEN method. To look at 

the physical meaning of this dilemma and to seek its 

solution, we continue to expand the intranodal flux 
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distribution with choice of e.g., an odd function as the 

basis function. 

𝛗(𝑥, 𝑦) = 𝐀𝒙sinh⁡(√𝚲𝑥)     (2) 

where 

𝚲 = 𝐃−𝟏𝚺                                 (3)

and D and  are the diffusion coefficient and crosssection 

matrixes, respectively and Ax is the expansion coefficient. 

Note that the flux expansion Eq. (1) has three terms 

with one coefficient each and all of them completely 

satisfy the diffusion equation for the node. Of course, 

both the basis functions and the coefficients of this 

expansion are square matrices with the number of energy 

groups as its order. However, thanks to the matrix 

function theory, they can be treated like scalar as long as 

they are functions of single matrix .[8,9] 

The average flux of the node is defined from this flux 

expansion as follows. 
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4√3
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The interface flux e.g., at the x interface is defined by 

𝛟𝑥 =
1
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Strictly speaking, when applying equivalence 

theory[10,11], the interface flux in Eq. (5) is 

homogeneous one. This is multiplied by the discontinuity 

factor to yield the heterogeneous one. However, for 

simplicity of derivation, we ignore the discontinuity 

factor at this moment. In implementing, of course, the 

discontinuity factor is involved. 

Further, the interface current coming into the node 

through the example interface is consistently defined by 

𝐉𝑥 =
𝐃
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2.1.2  AFEN Solution of Single-Node Problem 

Solving the single node problem in Fig. 1 to obtain the 

intranodal flux distribution means expressing three 

coefficients of the flux expansion Eq. (1) in terms of three 

interface currents. Please remember that we introduced the 

two decoupling transformations in the reference [6] to 

simplify this procedure: parity transformation and direction 

transformation. Since there is only one interface in each 

direction, only the direction transformation among them can 

be applicable in the trigonal AFEN method for both the 

expansion coefficients and the nodal unknowns as follow: 

𝐀𝜃 =
𝐀𝑥+𝐀𝑢+𝐀𝑝

3
, 𝐀𝜀 =

𝟐𝐀𝑥−𝐀𝑢−𝐀𝑝

3
, 𝐀𝜒 =

𝐀𝑢−𝐀𝑝

3
   (7) 
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Then, the flux expansion (1) with the original 

coefficients becomes the following expansion decoupled 

into three components corresponding to three 

transformed coefficients. 

𝛟(𝑥, 𝑦) = 𝛗𝜃
𝑠𝑛(𝑥, 𝑦) + 𝛗𝜀

𝑠𝑛(𝑥, 𝑦) + 𝛗𝜒
𝑠𝑛(𝑥, 𝑦)       (10) 

where three transformed flux distribution components 

are given by  

𝛗𝜃
𝑠𝑛(𝑥, 𝑦) = {−2 sinh (

√𝚲

2
𝑥) cosh (

√3𝚲

2
𝑦) + sinh(√𝚲𝑥)}𝐀𝜃    (11) 

𝛗𝜀
𝑠𝑛(𝑥, 𝑦) = {sinh (

√𝚲

2
𝑥) cosh (

√3𝚲

2
𝑦) + sinh(√𝚲𝑥)}𝐀𝜀       (12) 

𝛗𝜒
𝑠𝑛(𝑥, 𝑦) = −3 cosh (

√𝚲

2
𝑥) sinh (

√𝟑𝚲

2
𝑦) 𝐀𝜀     (13) 

Thanks to the direction transformation, each 

transformed component in Eq. (10) is related to only the 

corresponding transformed unknown.  Therefore, we can 

say that the flux distribution induced by each 

transformed unknown is the corresponding flux 

distribution component in equations (11) to (13). For 

example, the flux distribution induced by  is 𝛗𝜀
𝑠𝑛(𝑥, 𝑦).

 can be said to be odd in the x direction because it is 

related to the difference between 2x (located right in Fig. 

1) and u+p (located left in Fig. 1). This quantity

becomes even in the y direction because there is no 

upward or downward bias in locations of 2x and u+p. 

Therefore, 𝛗𝜀
𝑠𝑛(𝑥, 𝑦) induced by  should also be odd in

the x direction and even in the y direction. This 

corresponds to reality as shown in Eq. (12). Similarly, 

the distribution 𝛗𝜒
𝑠𝑛(𝑥, 𝑦) in Eq. (13) is also reasonable

from this point of view. 

However, 𝛗𝜃
𝑠𝑛(𝑥, 𝑦) is quite unreasonable because it

is odd in the x direction and even in the y direction but  

is even in the both directions. This unphysical 

phenomena of 𝛗𝜃
𝑠𝑛(𝑥, 𝑦)  can also be shown

mathematically. By eliminating the coefficient A from 

the two equations with the coefficient A(one for the 

transformed flux  and the other for the current J), we 

can get the relationship between the transformed flux and 

current as follows: 

𝛟𝜃 = 𝐓𝜃
𝑠𝑛𝐉

𝜃
 (14) 

We expand the relationship matrix 𝐓𝜃
𝑠𝑛  (which is a

matrix function of ) in Taylor series of . 

𝐓𝜃
𝑠𝑛 =

√3

8𝚲
+

√3

21
−

√3𝚲

294
+ 𝑂(𝚲2)  (15) 

It is obvious that the relationship matrix 𝐓𝜃
𝑠𝑛 is singular

at  = 0 and this is unphysical. 

Partial deficiency in the intranodal flux expansion due 

to the selection of the odd basis function as in Eq. (2) is 

compensated by the selection of the even basis function.  

𝛗(𝑥, 𝑦) = 𝐀𝒙cosh⁡(√𝚲𝑥)                   (16)

Repeating the process described for the case of the odd 

basis function so far, we can get the flux expansion 

decoupled into components by the direction 

transformation for the case of this even basis function. 

𝛟(𝑥, 𝑦) = 𝛗𝜃
𝑐𝑠(𝑥, 𝑦) + 𝛗𝜀

𝑐𝑠(𝑥, 𝑦) + 𝛗𝜒
𝑐𝑠(𝑥, 𝑦)       (17) 

where 

𝛗𝜃
𝑐𝑠(𝑥, 𝑦) = {2 cosh (

√𝚲

2
𝑥) cosh(

√3𝚲

2
𝑦) + cosh(√𝚲𝑥)}𝐀𝜃    (18) 

𝛗𝜀
𝑐𝑠(𝑥, 𝑦) = {− cosh(

√𝚲

2
𝑥) cosh (

√3𝚲

2
𝑦) + cosh(√𝚲𝑥)}𝐀𝜀    (19) 

𝛗𝜒
𝑐𝑠(𝑥, 𝑦) = 3 sinh (

√𝚲

2
𝑥) sinh (

√𝟑𝚲

2
𝑦)𝐀𝜀             (20) 

The even-odd test done in each of x- and y-directions 

for these three expansion components showed that only 

the first component Eq. (18) is suitable for the flux 

expansion. 

The dilemma caused by selecting only one of even and 

odd basis functions is solved by constructing the 

expansion function with only suitable ones among all the 
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expansion components derived from the even or odd 

basis function. 

𝛟(𝑥, 𝑦) = 𝛗𝜃
𝑐𝑠(𝑥, 𝑦) + 𝛗𝜀

𝑆𝑁(𝑥, 𝑦) + 𝛗𝜒
𝑆𝑁(𝑥, 𝑦)       (21) 

In this way, the flux expansion function is 

harmoniously composed of even and odd basis functions. 

Please note that this procedure can also be applied to find 

a polynomial which is symmetrical and harmonious in 

the triangular geometry. 

Expressing the transformed unknowns in terms of the 

transformed expansion coefficients, the original 3x3 

matrix equation is decoupled into three scalar equations 

due to the decoupling transformation. 

𝛟𝜃 = 𝐏𝜃
𝑐𝑠𝐀𝜃 ,⁡⁡⁡⁡⁡𝛟𝜀 = 𝐏𝜀

𝑠𝑛𝐀𝜀 ,⁡⁡⁡⁡⁡𝛟𝜒 = 𝐏𝜒
𝑠𝑛𝐀𝜒       (22) 

and 

𝐉𝜃 = 𝐃𝐐
𝜃
𝑐𝑠𝐀𝜃,⁡⁡⁡⁡⁡𝐉𝜀 = 𝐃𝐐

𝜀
𝑠𝑛𝐀𝜀 ,⁡⁡⁡⁡⁡𝐉𝜒 = 𝐃𝐐

𝜒
𝑠𝑛𝐀𝜒⁡⁡⁡ (23) 

By eliminating the coefficient vector, we can get the 

relationship between the transformed interface flux and 

current:  

𝛟𝛼 = 𝐓𝛼𝐀𝛼             (24) 

where  is , or  and 

𝐓𝜃 = 𝐏𝜃
𝑐𝑠𝐐

𝜃
𝑐𝑠−1𝐃−1

     (25) 

𝐓𝛽 = 𝐏𝛽
𝑠𝑛𝐐

𝛽
𝑠𝑛−1𝐃−1, 𝛽 = ⁡𝜀⁡𝑜𝑟⁡𝜒  (26) 

Fortunately, we have only two relationship matrices 

because we realized that T = T. 

2.2   AFEN Response Matrix 

The response matrix that computes the output, which are 

the outgoing interface partial currents out of a node, from 

the input, which are the incoming interface partial currents 

into the node, is derived by noting that the interface partial 

current at the interface s is expressed in terms of the 

interface flux Eq. (5) and current Eq. (6).  

𝐣𝒔
𝒇
=

𝐉𝒔
𝒇

𝟐
+

𝛟𝒔

𝟒
 (27) 

where flow direction index f is in or out, interface index s is 

x, u, or p. Then, the interface flux and current are 

equivalently given by 

𝐉𝒔
𝒊𝒏 = 𝐣𝒔

𝒊𝒏 − 𝐣𝒔
𝒐𝒖𝒕,⁡⁡⁡𝛟𝒔 = 𝟐(𝐣𝒔

𝒊𝒏 + 𝐣𝒔
𝒐𝒖𝒕)         (28)

Since the relationship (27) is linear and the direction 

transformation explained in the previous section is also 

linear, the partial current shall have its transformed form 

with respect to the transformation and this form shall 

have the relationship corresponding to that of Eq. (28) as 

follows,  

𝐉𝜶
𝒊𝒏 = 𝐣𝜶

𝒊𝒏 − 𝐣𝜶
𝒐𝒖𝒕,⁡⁡⁡𝛟𝜶 = 𝟐(𝐣𝜶

𝒊𝒏 + 𝐣𝜶
𝒐𝒖𝒕), 𝜶 = 𝜽, 𝜺, 𝒐𝒓⁡𝝌  (29)

Substituting these relationship into Eq. (24) and solving 

for the transformed outgoing partial current, we finally 

obtain the response matrix in the transformed system as 

follows, 

𝐣𝜶
𝒐𝒖𝒕 = 𝐑𝜶𝐣𝜶

𝒊𝒏, 𝜶 = 𝜽, 𝜺, 𝒐𝒓⁡𝝌                  (30)

where R = - (2I + T) -1 (2I – T). Again, R = R because 

T = T. 

Note that the interface partial currents can be easily 

transformed into their linearly transformed partners and 

vice versa. Once the interface incoming partial currents 

are given for a node, the interface outgoing partial 

currents can be calculated by the response matrix Eq. 

(30). Then, these outgoing partial currents become the 

partial currents incoming into its neighboring nodes. This 

provides an iterative process to solve the global core 

eigenvalue problem through the well-known inner-outer 

iteration. Generally, the number of inner iterations per 

outer iteration is an issue in this type of iteration. As in 

many other nodal methods, we used one for this value 

throughout this paper. 

As mentioned in Ref. [5], the inverse of any matrix 

function of  is singular when one of the eigenvalues of 

the crosssection matrix is very small. This singularity is 

a numerical singularity which is different from a 

mathematical singularity like the one involved in T𝜃
𝑠𝑛 in

Eq. 14. The numerical singularity can be easily removed 

in the manner described in the reference. 

2.3 RGB-BW Sweeping Scheme 

The response matrix calculations are performed only 

within a single node regardless of neighboring nodes. 

Therefore, these calculations are carried out by 

sequentially moving from one node to another. In this 

case, it is advantageous to sweep the nodes by grouping 

them in two steps as shown in Fig. 2. In the first step, the 

core is divided into red (R), green (G), and blue (B) 

hexagonal assemblies like in the reference (6) and in the 

second step, a hexagonal assembly is divided into black 

and white triangular nodes. 

This kind of iteration schemes is known to be good in 

convergence and stability due to geometrical balance. It 

further enhances the advantage in parallel-computing 

that the response matrix method has already. 

In addition, the memory required is saved by storing 

inputs of the response calculation, i.e., incoming partial 

currents and outputs, i.e., outgoing partial currents in the 

same storage. This is because the outgoing partial 

currents resulting from previous two other color types of 

node calculations automatically become incoming partial 

currents for the third kind of node calculations. 

Fig. 2. RGB sweeping scheme 

3. Numerical Results and Discussion

The accuracy of the AFEN response method in the 

trigonal geometry is demonstrated by the MHTGR-350 

problem. The MHTGR-350 problem represents a 

350MWth hexagonal prismatic block type HTGR core 

with graphite moderator and helium coolant. It has an 

active core of 66 fuel blocks in the fourth, fifth and sixth 
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rings of the core, surrounded by graphite reflectors with 

about three rings thick inward and outward. The 

assembly homogenized cross-sections directly come 

from the Reference [6].  

In Fig. 3, the assembly-wise relative powers of the 

trigonal AFEN method were compared with those of the 

hexagonal AFEN method. Since both the AFEN methods 

are based on the response matrix method, the zero 

incoming partial current boundary condition was applied. 

And, the hexagonal AFEN method against which the 

trigonal method is benchmarked is the refined AFEN 

method which replaces the corner-point fluxes with the 

flux moments. The step weighting function is used in the 

definition of the flux moment. Accuracy of this method 

was well shown in the reference [5]. This accuracy is also 

demonstrated by showing that, when compared with the 

CAPP solution of the MHTGR-350 problem with the 

cubic finite element option, a 22 pcm error occurs in the 

effective multiplication factor and up to 0.2% error in the 

block-wise power distribution. 

Fig. 3. Power distribution of the MHTGR-350 

benchmark problem (1/12 core). 

This figure shows that, contrary to our expectations, 

the triangular AFEN method results in quite large errors 

in the multiplication factor and in the block-wise power 

distribution even though it takes more than twice the 

computation time. This may be due to the looser flux 

continuity constraint at the interface between two 

adjacent hexagonal blocks in the triangular AFEN 

method than in the hexagonal AFEN method. While the 

hexagonal AFEN method divides a block interface in 

half and applies the continuity condition to each half, the 

triangular method applied only one continuity condition 

for the entire block interface. Of course, it additionally 

applies the continuity conditions to the six interfaces 

divided by six triangular nodes inside a hexagonal block. 

However, please note that in the hexagonal method, the 

flux is intrinsically continuous across these interfaces. 

Identification of another possible causes of the large 

error and how to overcome them will be pursued in the 

future. 

4. Conclusions

The triangular AFEN response matrix method was 

developed with the primary purpose of dealing with 

hexagonal assemblies with asymmetrical internals rather 

than increasing accuracy. The version of AFEN methods 

implemented here is the original one having only the 

interface fluxes as nodal unknown, considering that the 

number of nodes increases six times compared the 

hexagonal AFEN method. 

Eventually, with this paper, we have a complete set of 

AFEN methods for the key geometries that are important 

in core neutronic analysis, including rectangular, 

hexagonal and triangular geometries. In addition, this 

paper presents a methodology for how to construct the 

flux expansion function that is not only geometrically 

symmetric but also even-odd harmonious within a 

triangular node. 

This AFEN method was tested against the MHTGR-

350 benchmark problems. Unfortunately, the results 

show that this method cannot be used for actual core 

neutronic analysis due to its poor accuracy. It remains to 

be done in the future to identify the obvious cause of this 

poor accuracy and to find the way to overcome it. 
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