

Analysis of Non-Explosive TROI Particles for Debris Coolability Study

Hwan Yeol Kim^{*}, Ki Han Park, Keun Sang Choi, Chang Wan Kang, Jaehoon Jung, Sang Mo An Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon, Korea *Corresponding author: hykim1@kaeri.re.kr

Motivation

Background

- According to Korean SAMG, reactor cavity is flooded before a break of reactor vessel in case of a severe accident.
- Molten corium is fragmented into fine particles and accumulated on the cavity surface in a form of debris bed.
- How to secure the coolability of debris bed is an important safety issue for the mitigation of severe accident.

Scope & Objective

- Two-phase pressure drop test in TROI particle bed is planned at KAERI in 2021.
- Non-explosive TROI particles were sieved and analyzed to get the major parameters for an analysis of two-phase pressure drop test; i.e., PSD (Particle Size Distribution), porosity, and effective diameter of the particles.

Sieving and PSD of non-explosive TROI particles

- Among many TROI tests, non-explosive particles obtained from the Tests #1 ~ #4 are chosen.
- PSD for Tests #1 ~ #4 lies well between average FARO and average TROI.

Porosity of non-explosive TROI particles

Porosity of the particles was measured for Test #1 and #2; 0.470 for test #1 and 0.476 for Test #2

Mean diameter of non-explosive TROI particles

For a packed bed with multi-sized and irregular particles, various mean diameters are applied in the analysis of debris bed coolability.

mass mean diameter; $d_m = \sum x_i m_i = \sum \left(x_i \frac{x_i^3 f_i}{\sum x_i^3 f_i}\right) = \frac{\sum x_i^4 f_i}{\sum x_i^3 f_i}$ $d_a = \sum x_i a_i = \sum \left(x_i \frac{x_i^2 f_i}{\sum x_i^2 f_i} \right) = \frac{\sum x_i^3 f_i}{\sum x_i^2 f_i}$ area mean diameter; length mean diameter; $d_l = \sum x_i l_i = \sum \left(x_i \frac{x_i f_i}{\sum x_i f_i} \right) = \frac{\sum x_i^2 f_i}{\sum x_i f_i}$ number mean diameter; $d_n = \sum x_i n_i = \sum \left(x_i \frac{f_i}{\sum f_i} \right)$

Mean diameters for Tests #1 ~ #4 are calculated for the whole particle size ranges.

Mean diameter (mm)	Test #1	Test #2	Test #3	Test #4
Mass mean	3.49	3.43	2.75	3.24
Area mean	2.13	1.87	1.35	1.7
Length mean	0.77	0.44	0.38	0.49
Number mean	0.2	0.14	0.15	0.16

Particles in the small size range can play a major role in the calculations, because of many numbers. Mean diameters are also calculated excluding minimum particle size in the range of 0 ~ 0.2 mm.

Mean diameter (mm)	Test #1	Test #2	Test #3	Test #4
Mass mean	3.5	3.46	2.78	3.26
Area mean	2.24	2.19	1.57	1.9
Length mean	1.23	1.08	0.78	0.93
Number mean	0.64	0.53	0.45	0.5

Rosin-Rammler distribution of non-explosive TROI particles

For many irregular particles, the mass distribution is found to follow Rosin-Rammler distribution.

$$n\left[ln\left(\frac{1}{1-F}\right)\right] = n\ln(x) - n\ln(x_0)$$

- F: cumulative weight fraction less than size x
- n: uniformity constant
- x: particle size
- x_0 : characteristic particle size
- Rosin-Rammler distributions for Tests #1 ~ #4 are obtained including all particle size ranges (left) and excluding minimum particle size in the range of 0 ~ 0.2 mm (right).

> Uniformity constant (*n*) and characteristic particle size (x_0) are calculated. Characteristic particle size (x_0) is almost the same as the mass mean diameter for the case of excluding minimum particle size (0~0.2 mm).

		Test #1	Test #2	Test #3	Test #4	
Including all	n	1.86	1.63	1.5	1.6	
particles	x_o (mm)	3.5	3.27	2.61	3.1	
Excluding minimum	n	2.05	1.92	1.65	1.77	
particle size	<i>x_o</i> (mm)	3.55	3.4	2.74	3.2	

Conclusions

- Coolability of debris bed in wet cavity is of great safety issue for the mitigation of severe accident. For the resolution of this issue, two-phase pressure drop test using non-explosive TROI particles is planned at KAERI.
 Analysis of non-explosive TROI particles is conducted to
 - get the information of PSD, porosity, and mean diameters.

