Transactions of the Korean Nuclear Society Autumn Meeting, Changwon, Korea, October 22-23, 2020

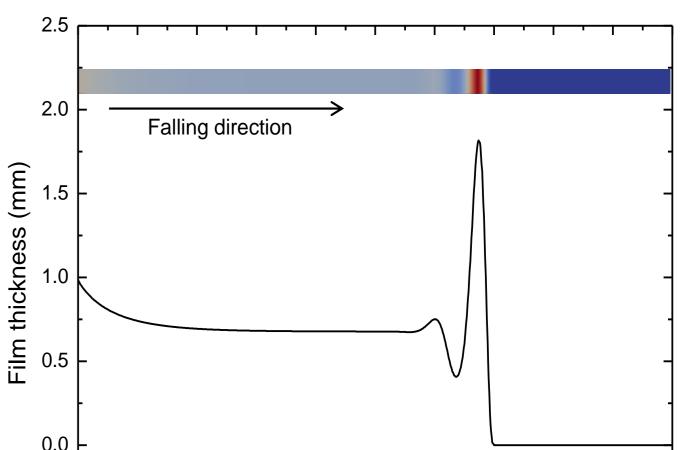
Surface Flow Simulation of Falling Films on a Vertical Plane

Sun Rock Choi, Dehee Kim, Jongtae Kim Korea Atomic Energy Research Institute

Introduction

- The reactor containment in a nuclear power plant provides the principal barrier to prevent the release of radioactive materials into the environment.
- During a severe accident, analysis of water/steam behaviors plays a vital role in avoiding both a hydrogen explosion and steam overpressure in the containment.
- Accidents including the water spray and steam injections form a continuous liquid film on the surface of structures and components.
- Consequently, the liquid film dynamics affects the steam condensation on the cooling surface and becomes an important factor in ensuring the structural integrity of the containment.
- This study has estimated the FVM-based liquid film solver implemented in OpenFOAM. Numerical simulations are conducted for surface falling films on a vertical plate.

Numerical Method


- Since liquid film over solid surfaces is very thin, the liquid film solver has developed based on the following assumptions:
 - The surface-normal flow can be assumed to be negligible.
 - The surface-tangential diffusion of mass, momentum and energy are also insignificant compared to the surfacenormal diffusion.
 - The velocity profile along the film is assumed to be quadratic.

Validation

• 1D falling liquid film along a vertical plate

 The falling liquid film provides a wrinkled curvature to overcome a contact force between the wet and dry regions

	Velocity (m/s)	/ Thickness (mm)	Eilm Eilm	5-						
selt theory	1.49909	0.677079	0.0							
OpenFOAM	1.49942	0.677494								
				0.0 0.1	0.2	0.3 F).5 0.6 stance (m	0.7 0.8)	8 0.9
						I	annig ai)	
artially-we	etted 2	D spatial di	strib	utior	١					
							Л		The second se	
PIVE	1	VIIDYIV	ŧ I				~			EXP.
	2 1 1	Y	`							
AGARA		I WAT	- 11							
ED KINK KINK (*			1							
		IN INIA								
			1							
A MANNA		I ANKY								
A MAR A SON	77		7				7			
										CFD
N I Yil 🛃 🤇										
N + + / 1 + + + +										
		15	1	-		-				

These assumptions simplify the 3D transport to the 2D surface flow by integrating the velocity distribution through the film. Thus, the governing equations can be written as follows:

Continuity equation

 $\frac{\partial \rho \delta}{\partial t} + \nabla_{\rm s} \cdot \left[\rho \delta U\right] = S_{\rho \delta}$

Momentum equation

$$\frac{\partial \rho \delta U}{\partial t} + \nabla_{\!s} \cdot \left[\rho \delta U U \right] = -\delta \nabla_{\!s} p + S_{\rho \delta U}$$

where

$$p = p_{imp} + p_{splash} + p_{vap} + p_{\sigma} + p_{\delta} + p_g$$

$$S_{\rho\delta U} = \tau_g - \tau_w + \tau_{mar} + \rho g_l \delta + F_{\theta} + S_{\rho\delta U,imp} + S_{\rho\delta U,splash} + S_{\rho\delta U,sep}$$

(a) $\Gamma = 73 \text{ g/m/s}$ (b) $\Gamma = 125 \text{ g/m/s}$ (c) $\Gamma = 212 \text{ g/m/s}$ (d) $\Gamma = 505 \text{ g/m/s}$

Conclusion

- The liquid film solver implemented in OpenFOAM is validated by simulating falling films on a vertical plate.
- The simple 1D falling film reveals an oscillating curvature at the front section. The steady-state film velocity and thickness show good agreements with the Nusselt theory.
- The partially wetted flow is simulated to account for the 2D liquid film phenomena such as wet/dry separation, rivulet formation, isolated wet droplets, etc. The simulation appropriately predicts the formation of the rivulet flow and the reduction of the wetted area fraction.
- The present liquid film solver will be employed for the steam condensation analysis on the cooling surface in ensuring the structural integrity of the containment.

ACKNOWLEDGEMENT

 This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT). (No. 2017M2A8A4015277)