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1. Introduction

Various events can occur in nuclear power plants 
(NPPs), and operators must identify them and take 
actions. If an accident occurs, the operator performs 
accident identification based on the symptoms presented 
in the procedure and takes actions to mitigate the 
accident with the contents specified in the procedure. 
However, the identification and actions are carried out 
within a short time, which can increase the operator’s 
mental load and human error. This paper primarily aims 
to reduce human error by providing accident 
identification results to the operator using artificial 
intelligence (AI) techniques. However, from the 
information provided primarily, the AI can inform the 
operator of which accident occurred, but it is not known 
how the accident was diagnosed. This only raises 
questions about the diagnostic background, which makes 
AI completely unreliable. Therefore, in this paper, not 
only the accident diagnosis result but also the diagnosis 
background is provided to the operator through 
explainable artificial intelligence (XAI). Explaining the 
causal relationship to the diagnosis result to the operator 
is expected to increase the trust in AI. Besides, it is 
expected that it will contribute to reducing human error 
if the provided results are presented to the operator by 
configuring a more understandable interface. 

2. Abnormal Diagnosis Algorithm

An algorithm was implemented to improve the 
reliability of the operator in AI by introducing XAI to 
the previously studied paper [1]. The algorithm was 
constructed by integrating a diagnostic module for 
abnormal diagnosis through AI and a verification 
module for increasing operator’s reliability. The 
integrated algorithm is shown in Fig. 1, divided into 
Group 1 and Group 2, and each group represents a 
module. Also, the green color showed in Fig. 1 means 
the output for each step. Additionally, the task for each 
step and the used methodology are shown in Table I. To 
be more specific about algorithm, the task of step 1 is 
important because the diagnosis of AI is limited in the 
case of untrained data. Therefore, only the trained data 
in step 1 is advanced to the next step. In step 2, the 
abnormality of the data is diagnosed, and if it is in a 
normal state, no further diagnosis is made. In step 3, the 
scenario of abnormal data is determined. The diagnosed 
result is transferred to the verification module to 
improve the operator’s reliability. Step 4 verifies 
whether the diagnosis succeeded or failed. Step 5 shows 

whether the expected symptoms were satisfied in the 
diagnosed scenario. Step 6 provides the basis for the 
diagnosis. 

Fig. 1. Algorithm overview for abnormal diagnosis. 

Table I: Task and method for each step in the algorithm. 

Group Step Task Methodology 

Group1 

1 
Trained conditions or 

not 
LSTM-

Autoencoder 

2 Abnormal states or not 
LSTM-

Autoencoder 

3 Scenario diagnosis LightGBM 

Group2 

4 
Diagnosis successful 

or not 
LSTM-

Autoencoder 

5 
Expected symptoms 

satisfied or not 
IF-THEN rule 

6 
Derive the basis for 

diagnosis 
XAI : SHAP 

3. Group1: Diagnostic Module

This section describes the diagnostic module in detail. 
The used AI methodology, data, and finally results are 
listed. 



3.1 LSTM-Autoencoder 

LSTM-Autoencoder is a combined model of LSTM 
for time series processing and an Autoencoder that 
copies the input to the output [2]. The model of LSTM-
Autoencoder is shown in Fig. 2.  
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Fig. 2. LSTM-Autoencoder structure. 

LSTM-Autoencoder performs good reconstruction on 
the trained data but the reconstruction fails on the 
untrained data. Using these characteristics, equation (1) 
is used to calculate the reconstruction error. In other 
words, the reconstruction error is low when trained data 
is input, and the reconstruction error is high when 
untrained data is input. In equation (1), x means real 
data, and 'x means reconstructed data.  

2
( )L x x x x′ ′− = − (1) 

The threshold is calculated with a 99.7% confidence 
interval based on the mean and standard deviation of the 
reconstruction error. Then binary classification is 
performed based on the calculated threshold. This 
methodology is used in steps 1, 2, and 4 in the algorithm. 

3.2 LightGBM 

LightGBM model is one of the decision tree 
methodologies, which is a machine learning technique 
with fast learning time and high performance [3]. The 
reason for high performance is that it uses a technique 
called gradient boosting decision tree to combine weak 
classifiers to create a strong classifier, which results in 
high accuracy. The reason for the fast learning time is 
that the existing decision tree series generates unneeded 
branch points in a level-wise algorithm, but the 
proposed model generates only the necessary points in a 
leaf-wise algorithm to have quick learning time. This 
methodology is used in step 3 in the algorithm.  

3.3 Applied data for Abnormal Diagnosis 

To obtain abnormal data from NPPs, a compact 
nuclear simulator that simulates Westinghouse-900 was 
used. Also, in order to determine the abnormal scenarios 
to be collected, the operational performance information 

system (OPIS) for nuclear power plant in which NPPs 
information is recorded was analyzed, and 20 scenarios 
were selected. The collected abnormal scenarios are 
shown in Table Ⅱ. 

Table Ⅱ: List of collected abnormal scenarios. 

Num. Name of abnormal scenarios 
Ab21-01 Pressurizer pressure channel failure (High) 
Ab21-02 Pressurizer pressure channel failure (Low) 
Ab20-01 Pressurizer level channel failure (High) 
Ab20-04 Pressurizer level channel failure (Low) 
Ab15-07 Steam generator level channel failure (High) 
Ab15-08 Steam generator level channel failure (Low) 
Ab63-04 Control rod fall 
Ab63-02 Continuous insertion of control rod 
Ab63-03 Continuous withdrawal of control rod 
Ab21-12 Pressurizer PORV opening 
Ab19-02 Pressurizer safety valve failure 
Ab21-11 Pressurizer spray valve failed opening 
Ab59-01 Charging pump failure stop 
Ab80-02 Stopped 2/3 of the main feed water pump turbines 
Ab64-03 Main steam line isolation 

Ab60-02 
Rupture of the front end of the regenerative heat 

exchanger 
Ab23-03 Leakage from CVCS to RCS 
Ab59-02 Leakage at the rear end of the charging flow control valve 
Ab23-01 Leakage from CVCS to CCW 
Ab23-06 Steam generator u-tube leakage 

As input variables, 46 variables were extracted by 
analyzing the expected symptoms for each scenario. In 
addition, the data was normalized using a min-max 
scaler. Equation (2) was used as a min-max scaler. 

min( )

max( ) min( )

(max( ) min( )) min( )

x x
std

x x

scaled std x x x

−=
−

= × − +
 (2) 

3.4 Results of each step in the Diagnostic Module 

The results obtained from the abnormal diagnosis 
algorithm are as follows. Fig. 3 shows the results for 
step 1, which corresponds to whether or not it is in the 
trained conditions. In Fig. 3, the threshold is expressed 
as a black straight line. If it is below the threshold, it 
means a trained condition, and if it is above the 
threshold, it means an untrained condition. The model 
trained only 16 of the 20 scenarios collected. As a result, 
when an untrained scenario is given as an input value, it 
is shown that it is untrained condition beyond the 
threshold. 

Fig. 3. Diagnosis result of trained conditions (left: trained 
condition, right: untrained condition). 
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Fig. 4, corresponding to step 2, indicates whether or 
not the data is abnormal, and classifies normal and 
abnormal based on the threshold as shown in Fig. 3. 
This model trained only normal data. As a result, when 
an abnormal scenario is given as an input value, it is 
shown that the abnormal condition exceeds the threshold. 

Fig. 4. Diagnosis result of abnormal states (left: normal 
condition, right: abnormal condition). 

Fig. 5, corresponding to step 3, shows the scenario 
diagnosed with the LightGBM model. In Fig. 5, the 
pressurizer PORV opening scenario is given as an input 
value, and it can be seen that the corresponding scenario 
number Ab21-12 is correctly matched. 

Fig. 5. Abnormal scenario diagnosis result. 

4. Group2: Verification Module

This section describes the verification module in 
detail. It describes the results of step 4 in the verification 
module and the XAI methodology. 

4.1 Results for step 4 in the Verification Module 

In step 4, the LSTM-Autoencoder described in 
section 3.1 is used, and diagnosis failure or success is 
classified based on the threshold. At this time, there are 
20 scenarios to be diagnosed, and 20 models 
corresponding to each diagnosis scenario are created. As 
a result, when the diagnosed result and the 
corresponding model are combined, the diagnosis is 
classified as success because it does not exceed the 
threshold, and when combined with the non-
corresponding model, the diagnosis fails beyond the 
threshold. Fig. 6, corresponding to step 4, indicates 
whether or not the diagnosis is successful, and classifies 
success and failure based on the threshold as shown in 
Fig. 3. 

Fig. 6. Diagnosis result of whether diagnosis succeeds or not 
(left: diagnosis success, right: diagnosis failure). 

4.2 Shapley additive exPlanations (SHAP) 

In the verification module, the XAI technique was 
used to improve the reliability of AI. First, the core of 
XAI is the interpretability. More specifically, 
interpretability is the process of finding the rationale for 
why you should or shouldn’t trust the model, why the 
model made a certain decision, and determine what 
outcomes are expected. Therefore, the algorithm used 
the Shapley additive exPlanations (SHAP) [4], one of 
the XAI methodologies, to derive the reason for making 
a specific decision. The SHAP methodology calculates 
the contribution of each variable by taking a specific 
value called the Shapley value. The Shapley value is 
represented by equation (3). 
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The definition of the variable used in equation (3) is 
shown in Table Ⅲ below. 

Table Ⅲ: Definition of variable used in equation (3). 

Variable Describe 

iφ  Shapley value for i data 

n Total number of variables 

S Al l sets except i  variable in the total group 

( )v S
The contribution of the set excluding  

the i  variable to the result 

{ }( )v S i∪
The contribution of the set containing  
the i  variable (overall contribution) 

That is, in equation (3), the contribution of the i  
variable is a value obtained by subtracting the sum of 
the contributions of the set excluding the i  variable 
from the total set contribution. This methodology is used 
in step 6 of the verification module. 

5. Interface Application

In order to more easily provide the result derived 
from the algorithm to the operator, an interface was 
constructed. The interface was designed by composing 4 
panels, and each panel consists of diagnosis results, 
monitoring of major variables of the diagnosed scenario, 
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Panel 1

Panel 3

Panel 2

Panel 4

Fig. 7. Integrated abnormal diagnostic algorithm interface. 

a list of major evidence for diagnosis, and detailed 
explanations of the diagnosis evidence. Fig. 7 shows 
each panel resulted from the pressurizer PORV opening 
scenario. First, panel 1 consists of steps 1 to 5 within the 
algorithm. Panel 1 shows the time and NPP’s power in 
real-time in the first line. The second line corresponds to 
step 1, which expresses its status in an alarm format. 
The third line corresponds to step 2 and is similarly 
expressed in an alarm format. The fourth line 
corresponds to step 3 and displays the number and name 
of the diagnosed abnormal scenario. The fifth line 
corresponds to step 4 and is expressed in an alarm 
format. Finally, line 6 corresponds to step 5 and displays 
symptoms depending on the diagnosed scenario. If the 
symptom is satisfied, a red alarm is displayed. Second, 
panel 2 graphically represents the symptom variables 
presented in step 5. This allows operators to monitor 
variables related to the scenario in real-time. Thirdly, 
panel 3 is associated with step 6 and shows the 
calculated contribution (Shapley value). In panel 3, the 
upper part presents variables with a contribution of 10% 
or more, and the lower part shows variables with a 
contribution of 1% to 10%. Finally, panel 4 shows a 
table with a more detailed description of panel 3. 

6. Conclusions

In this paper, an abnormal diagnosis algorithm was 
constructed to support the operator when abnormal 
conditions occur. This will reduce the human error and 
operator’s mental load by providing useful information 
to the operator using artificial intelligence (AI) for 
abnormal in the nuclear power plant. Besides, the 
reliability of the operator for AI can also be improved 
by providing diagnostic evidence using explainable 

artificial intelligence (XAI). Additionally, the interface 
was designed to make it easier to present all the results 
of the algorithm. If the operator is provided with 
evidence for the diagnosis result derived from AI, it is 
expected that the operators can diagnose rapidly 
accidents of nuclear power plants based on the evidence 
and take appropriate actions. 
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