Design of Optimal Coating Layer Thicknesses for an $800-\mu$ m UCO TRISO of a Small Prismatic HTR

Young Min Kim¹, Chang Keun Jo and Eung Seon Kim Korea Atomic Energy Research Institute 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 34057, Korea ¹ Corresponding author: nymkim@kaeri.re.kr

Objectives

- TRISO with a large-sized UCO fuel kernel up to 800 µm is a candidate fuel for a small and long-life HTR for power supply in polar and remote areas since many fissile materials can be loaded in it.
- This study suggests the optimal coating layer thicknesses of an $800-\mu m$ UCO TRISO using a response surface method (RSM) that can ensure the fuel safety.

Optimal Design for a TRISO

- The optimal design is to minimize an objective function with its constraints, where the objective function describes the TRISO fuel performance and measures the merits of different TRISO designs.
- An RSM is applicable to an optimal design when its objective function is difficult to express mathematically and/or its evaluation is very time-consuming. A computer-generated optimal design of Design-Expert[®] is used to perform an optimal design with some constraints:

Objective function $y = PF \cdot P_{f,SiC}$ with a constraint $0 \le t_B + t_I + t_S + t_O \le \left(\frac{3V_{compact} \cdot PF^{max}}{4\pi N_{TDICO} \cdot 10^{-12}}\right)^{1/3}$

where *PF* is the packing fraction of TRISOs in a compact \in [0,1] and *P_{f.SiC}* is the failure probability of the SiC layers \in [0,1], $V_{compact}$ is the compact volume (cm³), $N_{TR/SO}$ is the number of TRISOs in a compact, and t_B , t_I , t_S , t_O are the thicknesses of the buffer, IPyC, SiC, OPyC layers (μ m).

Packing fraction $PF = \frac{4\pi N_{TRISO} \cdot 10^{-12}}{3V_{compact}} (t_B + t_I + t_S + t_O)^3$, Failure probability $P_{f,SiC} = 1 - e^{-ln2} \left(\frac{\sigma_{\theta}}{\sigma_{med}} \right)^m$

 σ_{θ} is the tangential stress acting on the inner surface of the SiC layer (MPa), σ_{med} is the median

strength of the SiC layer (MPa), *m* is the Weibull modulus (dimensionless).

Calculation Results and Summary

- A reference reactor is a small prismatic HTR that has a fuel loading cycle of 10000 days. Its TRISO has an 800-µm UCO kernel with an enrichment of 15.5 w/o. The densities of the kernel, buffer, IPyC, SiC and OPyC are 10.5, 1.0, 1.9, 3.2 and 1.9 g/cm³, respectively. The linear heat generation rate of the compact is 8.122 W/cm.
- The thickness ranges for a optimal design are 100 to 150 μ m for the buffer, 20 to 60 μ m for the IPyC and OPyC layers, and 20 to 100 µm for

Variation of fuel burnup and fast fluence

Pyrolytic Carbon

ilicon Carbid

Fuel Kernel

A TRISO

Porous Carbon Buffe

Optimum coating layer thicknesses

the SiC layer. The compact considered is 1 cm in length and 1.162 cm in diameter. The maximum packing fraction of TRISOs is 40 %

The optimum solutions are that the thicknesses of the buffer, IPyC, SiC and OPyC layers are 100, 35, 63, 34 μ m, or 100, 40, 54, 40 μ m.

Thickness range, µm				Optimal thickness, µm				Packing
Buffer	IPyC	SiC	OPyC	Buffer	IPyC	SiC	OPyC	fraction, %
100~150	20~60 Targets at 35	20~100	20~60 Targets at 35	100	35	63	34	37.7
100~150	20~60 Targets at 40	20~100	20~60 Targets at 40	100	35	63	34	37.7
100~150	20~60 Equals 40	20~100	20~60 Equals 40	100	40	54	40	38.3

