CFD Analysis of Heat Removal Capability in a Natural Circulation Loop with Phase Change Material

<u>소현섭</u> 나인식 탁기영 정해용*

Introduction

• Background, PCM

Research Design

• Process, CFD Application Method

Result

• Result Analysis, Figure, Simulation Video

Conclusion

• Conclusion, Application plan, Supplement point, Future Works

Introduction

Background

- Need for passive cooling in case of total loss of power after Fukushima nuclear accident
- Design passive cooling system to accelerate natural convection using encapsulated PCM for performance improvement
- Since the passive cooling system varies in performance depending on a lot of complex effects, an evaluation of heat removal performance improvement using CFD is performed when PCM is used.
- It is necessary to numerically determine whether the heat removal performance of the passive cooling system can be improved using PCM capsules.

PCM

• PCM (Phase Change Material)

-A material that changes phase at a constant temperature and uses latent heat absorbed and released.

-NASA develops spacecraft, space suit filling materials, and commercializes iceboxes, refrigerator truck, etc. as cold and heat storage materials.

-Promote natural convections through high latent heat and density changes in the phase change process

Encapsulated PCM to prevent it from flowing out.

PCM

• PCM (Phase Change Material)

-A material that changes phase at a constant temperature and uses latent heat absorbed and released.

-NASA develops spacecraft, space suit filling materials, and commercializes iceboxes, frozen tops, etc. as cold and heat storage materials.

-Promote natural convections through high latent heat and density changes in the phase change process

Encapsulated PCM to prevent it from flowing out.

Heat Sink

Heat Source

Research Design

Research Design, Process

PCM Capsule PCS design

CFD Application

Result value Evaluation

PCM capsule property setting

Passive cooling system design

Physics, Mesh, IC, BC

Result value evaluation Result analysis

Research Design

CFD Application Method

Geometry

Geometry

< System Specification >

Width	0.3 m	
Depth	0.17 m	
Height	0.5 m	
Volume	20.5 L	

- K epsilon turbulence model
- Segregated Flow
- Two layer all y+ wall treatment

• Turbulent heat transfer analysis

- Lagrangian Multiphase
- Discrete Element Model (DEM)

PCM Capsule Tracking

Mesh

Meshing Method: Trimmed mesh

Base size: 0.015 m

Surface growth rate: 1.3

Mesh

Meshing Method: Trimmed mesh

Base size: 0.015 m

Surface growth rate: 1.3

PCM Capsule Property

Particle diameter	0.01 m	
Initial particle temperature	300 K	
Melting temperature	310 K	
Latent heat	202,000 J/ kg	
Specific heat	3000 J/kg K	
Number of PCM	503	
Total mass of PCM capsules	0.2765 kg	
Mass fraction of PCM capsules	1.35 %	
	1050 kg/m ³ (Solid state)	
PCM Capsule Density	930 kg/m ³ (Liquid state)	

ρ Density

(309 K < T <311 K)

$C_p(T) = -147000T^2 + 9.114 \times 10^7 T - 1.412655 \times 10^{10}$

PCM

CFD Summary

Geometry : Natural Circulation Loop

Physics: K – epsilon turbulence model, Segregated Flow

Two layer all y+ wall treatment,

Discrete Element Model (DEM), Lagrangian Multiphase

Mesh: Trimmed cell Mesher

Initial condition: Temperature 300 K (Water, PCM capsule)

Boundary condition: Heat source 340 K (Static Temp.) Heat sink 280 K (Static Temp.) Other adiabatic

Result

Result

Output	Water	Water + PCM
Mean temperature	314.60 K	310.58 K
Q _{in}	1140.1 W	5280.09 W
Q _{out}	-1137. 549 W	-5226.566 W
$\Delta Q/Q_{in}$	0.224 %	1.01 %
Mass flow rate	0.1578 kg/s	0.2404 kg/s
Water velocity	0.01875 m/s	0.02844 m/s

- Increased heat transfer due to increased flow rate
 - Drag force is applied between PCM capsules and fluids due to the buoyancy of the PCM to improve the natural convection heat transfer of the fluid.

• Increased heat transfer due to reduced temperature change of water due to high latent heat of PCM

• Heat Source

 $\dot{Q}_{Convection} = hA(T_{hot} - T_{water})$

Reduction of temperature rise in water around the heat source $\rightarrow \Delta T$ increase $\uparrow \rightarrow \dot{Q}_{convection}$ increase \uparrow

• Heat Sink

 $\dot{Q}_{Convection} = hA(T_{cool} - T_{water})$

Reduce the temperature drop of water around the Heat sink $\rightarrow \Delta T$ increase $\uparrow \rightarrow \dot{Q}_{Convection}$ increase

Conclusion

Conclusion

- **4K difference** in average temperature of the system under the same conditions (in Quasi- steady state)
- When PCM capsules were inserted into a Loop-type passive cooling system with 1.35% mass fraction, they delivered about 5 times more heat transfer under the same conditions and improved internal flow rates by 50%.
- PCM capsules have the potential to be used to improve heat removal capability in a passive cooling system in the form of a loop.

Application Plan

- In the event of a Total loss of power accident, it is used to cool down areas, Such as MCR, Vital area, etc. where computer equipment is needed to be cooled.
- PCCS tank depletion protection/ cool the tank for delay in depletion time

• Can be used in various fields (required server rooms, etc.)

Future Works & Supplement point

Future Works

Supplement Point

Passive cooling system geometry

Working Fluid

PCM Property, Mass fraction

Working temperature

PCM capsule integrity

Radiation stability

Performance

Differences between CFD and real-world experiments

감사합니다

