

Quantum Engineering

The concept design of the new cycle layout of the nuclear-solar hybrid system

In woo Son^a, Jeong Ik Lee^{a,*}

^aDepartment of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong Yuseong-gu, Daejeon 305-701, Republic of Korea **Corresponding author: jeongiklee@kaist.ac.kr*

Introduction

In previous study, the KAIST research team developed the concept of a nuclearsolar hybrid system that combines nuclear power, TES (Thermal Energy Storage), and CSP (Concentrated Solar Power).

The hybrid systems have the advantage to compensate for each other's shortcomings: maintain high capacity factor during load-following (Nuclear), large solar field area (CSP).

• KAIST-MMR using sCO_2 power cycle was used for the nuclear power of the hybrid system.

KAIST-MMR is composed of a single module

• For a fair comparison, the cycle design values were set the same as in the previous system except for the re-heater CO_2 outlet temperature as shown in the below table.

 \bigtriangledown Cycle design fixed value and optimization variables

Cycle design fixed value										
Max Pres.	20Mpa	MMR heat	36.2MWth							
Min Temp.	35°C	CSP heat	27.15MWth							
MMR outlet Temp.	550°C	Turbine eff.	85%							
Re-heater outlet Temp.	550°C	Compressor eff.	80%							
HTR, LTR effectiveness	0.95	Component pressure drop (Kpa)	100-150							
Optimization variables										
Pressure ratio		Flow split ratio								
40.35 Recompression cycle T-s diagram										

that combines the power system and the reactor core, so it can be transported by truck or ship.

 \triangle Concept diagram of the KAIST MMR

MMR is a CO_2 -cooled reactor and the working fluid of the CSP and TES is a molten salt, recompression with reheating cycle layout is used.

• However, the temperature difference between the TES inlet and outlet is smaller than that of the TES used in the operating CSP.

 \triangle Recompression with reheating cycle layout of the previous hybrid system

\bigtriangledown The temperature of	\bigtriangledown The temperature difference between the hot and cold TES of the various operating CSP							
	Hybrid system	Gemasolar plant	Dunhuang plant					
T _{TES,Hot} (°C)	585	565	565					
T _{TES,Cold} (°C)	530	290	290					
ΔT_{TES} (°C)	55	275	275					

The new cycle layout is proposed using a molten salt cooled reactor that has the same output as MMR.

■ It has the advantage of increasing the temperature difference of TES and can improve the flexibility of the output through one integrated heat source.

 \triangle Optimization results and T-s diagram of the hybrid system

• As a result of the optimization, it was confirmed that the highest efficiency was 40.2% at Pressure Ratio (PR) = 2.26 and Flow split ratio (FSR) = 0.65.

3. Cycle Component design

It is assumed that the turbomachinery of the hybrid system uses an integral gear approach.

the turbomachinery is designed at If different rpm, it can be connected to one shaft by being bitten by the central bull-gear shaft.

 \triangle The example of the integrally geared expander compressor

Therefore, in this study, the new cycle layout is optimized and the cycle component design is performed.

Methods

1. Site selection

The same heat output and target region were set to fairly compare the previous hybrid system and the new system

I KAIST-TMD code is used to estimate the turbomachinery off-design performance map for the hybrid system by using corrected mass flow rate and rpm.

• Heat exchangers were designed through the KAIST-HXD code which was developed in MATLAB environment and can perform PCHE design for the sCO₂ power system.

Result

The cycle components were designed using the KAIST-TMD and KAIST-HXD code as follows.

	abla Design result of the turbomachinery											
200		Tu		bine M		lain comp.	Re-comp.					
	RPM		7200			10800	10800					
	Stage		4		6		10					
	Work (MW)		38.3		5.5		7.3					
	Pressure ratio		2.26			2.4	2.37					
	Efficiency (%)		85			80	80					
	T_{in} (°C)		5	50		35	70.3					
	P _{in} (Mpa)			9.7		8.3	8.4					
	Pout(Mpa)			8.7		20.0	19.9					
	Mass flow rate(kg/	/s)	37	74.4		243.4	131.1					
=11880	∇ Design result of the heat exchangers											
	Parameters	H	ΓR	LTF	2	Pre-cooler	Re-heater					
	PCHE Type	Zig	gzag	Zigza	ag	Zigzag	Straight					
	Heat load [MW]	120.0 35000		52.9)	38.3	63.3					
	Hot Avg. Re #			46000		74400	1000					
	Cold Avg. Re #	54000		23000		3930	16000					
	ΔP_{hot} [kPa]			150		100	80					
30	ΔP_{cold} [kPa]			100		100	100					
	Length [m]	2.	15	3.74		0.97	4.63					
	Volume [m ³]] 6.34		11.92		1.13	17.26					

In previous hyrbrid system, the electricity demand and DNI was selected using the South Korea's data

The electricity demand and DNI used the same thing as the previous hybrid system.

b The seasonal average DNI of the target area 0

2. Cycle optimization

According to Ahn's work, the recompression cycle has the highest cycle efficiency at 400-600°C among the various layout.

> **Recompression cycle layout for the hybrid system**

 \triangle Performance map (Turbine, Main comp., Re-comp.)

Conclusions

The cycle layout of the new hybrid system was optimized and the cycle components were designed using the in-house code.

The difference in TES temperature was increased by about 90°C compared to the previous hybrid system.

• As a future study, the off-design performance of the new hybrid system will be calculated.