Measurement of flow uniformity in the heat exchanger design for a SFR steam generator

김명호*, V. T. Nguyen, 임성혁, 정요한, 최선락, 김병재†

Contents

- Design headers and a perforated plate through numerical simulation
- Flow uniformity measurement using flow visualization
- Conclusion

Simulation results

Design the header (k-ε Realizable turbulent flow, Mesh: 100,000,000 level)

Model	Reynolds number	CoV	Pressure drop (kPa)	Flow rate (m ³ /s)
Prototype	6.789×10 ⁶	0.2614	3771.3	0.67
Scale adjustment	6.789×10 ⁴	0.2536	0.3788	0.0067

Simulation results

□ Design a perforated plate (1/2)

• The optimal location is 80mm from a heat exchanger inlet of the inlet header through 2-D simulation

<Positioning of a plate>

- Design a perforated plate based on flow velocity
- Arrange the plate by selecting a optimal position to improve the flow maldistribution

Simulation results

□ Design a perforated plate (2/2)

□ Configuration of experimental system

<33x66 channel heat exchanger>

<Perforated plate>

<Experimental loop and PIV configuration>

□ Measurement position

- Outlet header: Check the flow uniformity according the the presence or absence of the perforated plate
- Divided the heat exchanger outlet area into 5 sections to measure the flow rate accurately

□ Original model results[Inlet header] (1/5)

<Inlet header>

Experimental result (velocity vector, contour)

Simulation result (velocity vector, contour)

□ Original model results[Outlet header_middle] (2/5)

<The velocity fields at the vertical middle planes of the channel exit area for original design>

□ Original model results[Outlet header_side] (3/5)

<The velocity fields at the vertical side planes of the channel exit area for original design>

□ Original model results[Outlet header] (4/5)

<Outlet header>

□ Original model results (5/5)

• Calculation of the horizontal flow velocity at 20mm from the channel exit considering the PIV accuracy

- Both results are similar
- If there is no perforated plate, flow maldistribution is large

□ Presented model results[inserting a plate, Inlet header] (1/5)

0.756 0.567 0.378 0.189 0.000 [m s^-1]

<Inlet header>

Simulation result (velocity vector, contour)

□ Presented model results[inserting a plate, Outlet header_middle] (2/5)

<The velocity fields at the vertical middle planes of the channel exit area for presented model>

□ Presented model results[inserting a plate, Outlet header_side] (3/5)

<The velocity fields at the vertical side planes of the channel exit area for presented model>

□ Presented model results[inserting a plate, Outlet header] (4/5)

□ Presented model results[inserting a plate, Outlet header] (5/5)

• Calculation of the horizontal flow velocity at 20mm from the channel exit considering the PIV accuracy

<Middle plane>

<Side plane>

- Both results are similar
- Confirmed that the flow velocity in the middle and side planes became uniformly by inserting a perforated plate

Conclusion

□ Summary

- Experimental verification that the flow maldistribution was improved by inserting a perforated plate
- When a perforated plate is installed, the pressure drop increases by about 13%
- Experiment and simulation results are well matched

		CoV	Pressure drop	
Original model	Simulation	0.2536	378.8Pa	
	Experiment	_	388.1Pa	
Presented model	Simulation	0.0481 (81%p decrease compared to the original model)	477.2Pa (26%p increase compared to the original model)	
	Experiment	_	436.7Pa (13%p increase compared to the original model)	

<Comparison with experimental and simulation results>

