
Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Application of Shannon Decomposition to Event Tree Quantification

Jongsoo Choi
Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142

Corresponding author: k209cjs@kins.re.kr

1. Introduction

The fault tree/event tree methodology is widely used
in the nuclear industry to obtain risk models for
probabilistic safety assessment (PSA) studies. The
classical methodology to assess these models is based
on the computation of the minimal cutsets (MCS). The
MCSs are essentially applicable for coherent fault trees.

For many real PSA models, the full conversion
procedure remains out of reach in terms of
computational resources owing to their size, non-
coherency, and complexity. A potential solution to
improve the quality of assessment methods is to design
hybrid algorithms that combine the information derived
from the calculation of MCS with the Binary Decision
Diagrams (BDDs) methodology [1,2,3].

BDD is a popular data structure for representation
and manipulation of Boolean functions. It is based on
the well-known Shannon decomposition, or Boole’s
expansion theorem, also called pivotal decomposition.

In this paper, an implementation of the Shannon
decomposition method is proposed for complex and
non-coherent event tree quantification.

2. Shannon Decomposition

We extend the Shannon decomposition of Boolean
functions to more general classes of functions. A fault
tree is used to represent a binary system. A binary
system is a system in which all components and the
entire system are assumed to be either completely
operational or completely failed. A binary system is
denoted F where X is the set of components and F is a
binary function of the component states.

The Shannon decomposition is the following
identity:

F = x · Fx + x'· Fx' (1)
where F is any Boolean function of coherent or non-
coherent fault tree, x is a variable, x' is the complement
of x, and Fx and Fx', are F with the argument x set equal
to 1 and to 0 respectively. The terms Fx and Fx', are
sometimes called the positive and negative Shannon
cofactors, respectively, of F with respect to x.

A more explicit way of stating the Shannon
decomposition is:

F(x1, x2, …, xn) = x1· F(1, x2, …, xn) +
x1'· F(0, x2, …, xn). (2)

In Exclusive OR (XOR) form, Eq. (2) also holds when
the disjunction “+” is replace by the XOR operator ⊕:

F(x1, x2, …, xn) = x1· F(1, x2, …, xn) ⊕
x1'· F(0, x2, …, xn). (3)

Repeated application for each argument leads to the
Sum of Products (SOP) canonical form of the function
F. For n = 2 that would be

F(x1, x2) = x1· F(1, x2) + x1'· F(0, x2)
 = x1 x2· F(1, 1) + x1 x2'· F(1, 0) +

x1' x2· F(0, 1) + x1' x2'· F(0, 0). (4)
By N/2 decompositions respect to arbitrarily selected

variables, we can get N decomposed functions which
are mutually exclusive. The Boolean function F of the
original fault tree can be expressed in terms of the
decomposed trees and their conditional events as

F(X) = X1· F1 ⊕ X2· F2 ⊕ … ⊕ XN· FN (5)
where

F(X) : original fault tree
Xi : i-th condition event of which argument is set

equal to 1 or 0
Fi : conditional event of F(X) given the i-th condition

event (Fi | Xi)
Because the union of all the condition events is the
universal set and each condition event is mutually
exclusive, then

Pr(X1) + Pr(X2) + … + Pr(XN) = 1. (6)
From Eq. (5), the probability of the top event of an
original fault tree can be calculated as follows:

Pr[F(X)] = Pr(X1) Pr(F1) + Pr(X2) Pr(F2) + …
 + Pr(XN) Pr(FN). (7)

If all the conditional events of F (Fi, i = 1, …, N)
without exception are OMEGA events (i.e., Pr(Fi) = 1)
or PHI events (i.e., Pr(Fi) = 0), Eq. (5) is an equivalent
Sum of Disjoint Products (SDP) [2,4] of the original
fault tree. This SDP reduces the probability evaluation
to a simple summation.

The exact analysis of complex fault trees is a very
difficult task. Many methods have been defined to
reduce computation time and working memory usage.
A complex fault tree is recursively decomposed into a
set of mutually exclusive simpler fault trees until their
dimensions are compatible with the available working
memory size. Then, the results of the analysis of all
generated simpler trees are composed to obtain the
results for the original un-decomposed fault tree.

3. Independent Logic Trees

Fault tree analysis is a top-down approach to failure
analysis, starting with a potential undesirable event
called a TOP event, and then determining all the ways it
can happened. The causes of the TOP event are
connected through logic gates. In this paper we only
consider AND-, OR-, k/n-, NAND-, and NOR-gates.

Let Ei denote that input event i occurs, and Pi =
Pr(Ei). The input events are basic events or gate events.
When the input events of a gate are mutually
independent, we can get the exact probability of the
gate event. This gate is called “independent gate” in this
paper.

When we have a single gate with n mutually
independent input events, we can get the exact
probability of the gate using Table 1.

Table 1. Probability calculation for independent gates
gate symbol probability of gate
AND * P1 P2 … Pn

OR + 1 – (1-P1) (1-P2) … (1-Pn)
k out of n k See Table 2
NAND & 1 - P1 P2 … Pn
NOR % (1-P1) (1-P2) … (1-Pn)

Table 2. Probability of example k-out-of-n gates
k n probability of gate
2 3 P1P2 + P1(1-P2)P3 + (1-P1)P2P3
2 4 P1P2 + P1(1-P2)P3 + P1(1-P2)(1-P3)P4

+ (1-P1)P2P3 + (1-P1)P2(1-P3)P4

+ (1-P1)(1-P2)P3P4
3 4 P1P2P3 + P1P2(1-P3)P4 + P1(1-P2)P3P4

+ (1-P1)P2P3P4

When all the gates of a fault tree are independent
logic gates, this tree is called an “Independent Logic
Tree (ILT)” in this paper. We can get the exact top
event probability of an ILT by simple calculations in
bottom-up order.

The bottom-up algorithm is the simplest algorithm
that computes the probability of failure of the top event.
It starts at the bottom of the tree and compute the
probability of failure of each gate based on its logic and
the probabilities of its inputs. It moves upward and
solves the tree at each level until the top event is
reached. If a basic event appears multiple time in
different places in the fault tree, the estimated
probability of failure by the bottom-up algorithm is
incorrect.

If a fault tree has no multiple occurring basic event
(MOE), the fault tree must be an ILT. Then we can get
the exact top event probability of the tree by the
bottom-up algorithm.

4. Decomposition to ILTs

A large fault tree includes thousands of gates, basic
events, and MOEs. The probability of the top event in a
simple fault tree that does not include MOE can be
computed using the bottom-up method.

In order to decompose a complex fault tree into
simple ILTs, the DILT software is developed in this
study.

The process of decomposing a tree to the positive
and negative Shannon cofactors can be broken down
into the following stages:
1. selecting a pivot basic event xi
2. decomposing the tree with respect to xi
3. simplifying two decomposed trees
4. ascertaining whether the decomposed tree needs

further decomposing
For each decomposition of an input tree, DILT

selects a pivot basic event from the MOEs of the tree.
DILT decomposes the tree with respect to the selected
basic event. DILT also simplifies the two decomposed
trees by merging and subsuming. Then the decomposed
trees are new input trees for next decompositions. If a
decomposed tree is ILT, PHI event or OMEGA event,
the decomposed tree is no longer a next input tree.

At the end of decomposition, there are no input tree
to be decomposed. Then the exact probability of the top
event of an original fault tree can be calculated by Eq.
(7).

5. Application to Seismic IE Calculation

In order to assess applicability of the proposed
method, an example SPSA result is selected:

• Seismic pre-ET: Fig. 1
• # of headings in ET: 7 (Fig. 1)
• Seismic induced IEs: 7 (Fig. 1)
• Seismic induced events: 26 (Table 3)
• # of random basic events in pre-ET: 2

- SLLOCA (mean = 0.00033, EF = 4.9)
- OPHR (mean = 0.01, EF = 10)

Table 3. SSC Fragility Results

event Am βR βU event Am βR βU
SLOOP 0.3 0.3 0.45 ECWPF 2.78 0.35 0.34
SRTRC 0.72 0.3 0.32 ESFAF 4.41 0.38 0.85
SRTSF 1.08 0.35 0.37 SILSF 2.06 0.35 0.38
SCCSF 1.24 0.35 0.36 SLCRC 1.61 0.35 0.49
SBCRC 1.08 0.3 0.33 SLCSF 2.42 0.35 0.5
SBCSF 1.62 0.35 0.37 SBRRC 0.8 0.31 0.33
SDGCC 1.35 0.35 0.37 SBRSF 1.2 0.35 0.37
SCSTC 0.92 0.16 0.33 ECWCF 0.7 0.37 0.36
SSWRC 1.36 0.3 0.35 SECT 0.84 0.3 0.36
SSWSF 1.67 0.35 0.4 ESWXF 1.23 0.31 0.39
CCWAF 1.66 0.37 0.38 SITSF 0.98 0.21 0.46
SACBC 1.84 0.37 0.38 SSWIT 2.33 0.41 0.45
CCWPF 2.65 0.42 0.53 SICPB 1.5 0.3 0.3

The event tree of Fig. 1 is complex and non-coherent
because the headings are not mutually independent. The
end-states of the event tree are seismic induced IEs. The
Boolean logics of the IEs (i.e., SQ 2 ~ SQ8) are written
in Table 4. For example, SQ2 is a complex and non-
coherent fault tree problem.

Table 5 is a set of decomposed ILTs equivalent to
SQ2. Using Table 5 which is obtained by the DILT
software, the exact probability of SQ2 is calculated by
simple summation.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

Fig. 1. Example of seismic pre-ET

Table 4. Boolean equation for ET (Fig. 1)

SQ8 * GLC
SQ7 * GLEP -GLC
SQ6 * SCSTC -GLEP -GLC
SQ5 * GLCW -SCSTC -GLEP -GLC
SQ4 * SICPB -GLCW -SCSTC -GLEP -GLC
SQ3 * GLL -SICPB -GLCW -SCSTC -GLEP -GLC
SQ2 * SLOOP -GLL -SICPB -GLCW -SCSTC -GLEP -GLC
SQ1 * -SLOOP -GLL -SICPB -GLCW -SCSTC -GLEP -GLC
GLL * SLLOCA SITSF
GLCW + GLOCCW GLOECW
GLOCCW + CCWPF CCWAF
GLOECW + GAHU ECWPF ECWCF SECT ESWXF
GAHU * ESFAF OP-HR
GLEP + SCCSF SBRSF G120VAC G480VAC G416KVAC
G120VAC * GCHAGER GXFMX
G480VAC + G480VRELAY SLCSF
G416KVAC + G416KVRELAY SSWSF
GCHAGER + GCHGRELAY SBCSF
GXFMX + GXFMRRELY SRTSF
G480VRELAY * SLCRC OP-HR
G416KVRELAY * SSWRC OP-HR
GCHGRELAY * SBCRC OP-HR
GXFMRRELY * SRTRC OP-HR
GLC + SACBC SILSF SSWIT

Table 5. Decomposed trees equivalent to SQ2
(Bottom-up ordered tree logics)

G13 + SRTRC SRTSF
G12 + SBCRC SBCSF
G09 * G12 G13
G03 * SITSF SLLOCA
G02 % SCCSF SCSTC SSWRC SSWSF CCWAF SACBC

CCWPF ECWPF ESFAF SILSF SLCRC SLCSF SBRSF
ECWCF SECT ESWXF SSWIT SICPB G03 G09

SQ2-1 * SLOOP G02 OPHR

G09 * SRTSF SBCSF
G03 * SITSF SLLOCA
G02 % SCCSF SCSTC SSWSF CCWAF SACBC CCWPF

ECWPF SILSF SLCSF SBRSF ECWCF SECT ESWXF
SSWIT SICPB G03 G09

SQ2-2 * SLOOP G02 -OPHR

Table 6 is a set of Boolean equations equivalent to
SQ2 which is provided in Example PSA report. It is an
input for the PRASSE code.

Table 7 is a comparison of SQ2 quantification
between the 2 disjoint ILTs for DILT and the 14
disjoint equations for PRASSE, respectively. It shows
that two types of Boolean equations are equivalent to
each other.

Table 6. PRASSE input for SQ2 (LOOP)
1. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF

SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF SBCSF -SRTSF OP-HR -SLCRC -SSWRC
-ESFAF -SRTRC

2. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF SBCSF -SRTSF -OP-HR

3. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF -SBCSF SRTSF OP-HR -SLCRC -SSWRC
-ESFAF -SBCRC

4. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF -SBCSF SRTSF -OP-HR

5. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC
-ESFAF SBCRC -SRTRC

6. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC
-ESFAF -SBCRC

7. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF
-ECWCF -SECT -ESWXF -SBCSF -SRTSF -OP-HR

8. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF
-SRTRC

9. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF SBCSF -SRTSF -OP-HR

10 -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF -SBCSF SRTSF OP-HR -SLCRC -SSWRC -ESFAF
-SBCRC

11. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF -SBCSF SRTSF -OP-HR

12. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF
SBCRC -SRTRC

13. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF
-SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF
-SBCRC

14. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF -SECT
-ESWXF -SBCSF -SRTSF -OP-HR

Table 7. SQ2 probabilities using Table 5 and 6

Pr(Ei) DILT PRASSE
0.1 1.9593734E-02 1.9593734E-02
0.3 9.2428376E-04 9.2428376E-04
0.5 4.6044588E-06 4.6044588E-06
0.7 8.0039493E-10 8.0039497E-10
0.9 3.2520647E-18 3.2520761E-18

5. Conclusions

The exact analysis of complex and non-coherent
Boolean equations (e.g., event tree) is a very difficult
task. This study developed a method to exactly quantify
complex Boolean equations based on the Shannon

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

decomposition technique and the characteristics of
Independent Logic Tree (ILT). This method was
implemented in the DILT software. DILT can treat the
5 types of logic gates: AND-, OR-, k/n-, NAND-, and
NOR-gates. Non-coherent fault trees can be expressed
by NAND-, and NOR-gates. The DILT software
converses an original tree into the equivalent set of
decomposed ILTs and disjoint products. The output of
DILT is easily understandable and simpler than disjoint
equations of the PRASSE code.

REFERENCES

[1] R. Bryant, Graph Based Algorithms for Boolean Function
Manipulation, IEEE Transactions on Computers, C-35(8),
677-691, 1986.
[2] Rauzy A, New algorithms for fault trees analysis,
Reliability Engineering and System Safety, 40, 203–211,
1993.
[3] Jung S, Han SH, Yang JE. Fast BDD truncation method
for efficient top-event probability calculation, Nuclear
Engineering Technology, 40, 571–80, 2008.
[4] J. Choi, N. Cho, A Practical Method for Accurate
Quantification of Large Fault Trees, Reliability Engineering
and System Safety, 92, 971-982, 2007.

Transactions of the Korean Nuclear Society Virtual Autumn Meeting
December 17-18

