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1. Introduction

The fault tree/event tree methodology is widely used 
in the nuclear industry to obtain risk models for 
probabilistic safety assessment (PSA) studies. The 
classical methodology to assess these models is based 
on the computation of the minimal cutsets (MCS). The 
MCSs are essentially applicable for coherent fault trees. 

For many real PSA models, the full conversion 
procedure remains out of reach in terms of 
computational resources owing to their size, non-
coherency, and complexity. A potential solution to 
improve the quality of assessment methods is to design 
hybrid algorithms that combine the information derived 
from the calculation of MCS with the Binary Decision 
Diagrams (BDDs) methodology [1,2,3]. 

BDD is a popular data structure for representation 
and manipulation of Boolean functions. It is based on 
the well-known Shannon decomposition, or Boole’s 
expansion theorem, also called pivotal decomposition. 

In this paper, an implementation of the Shannon 
decomposition method is proposed for complex and 
non-coherent event tree quantification. 

2. Shannon Decomposition

We extend the Shannon decomposition of Boolean 
functions to more general classes of functions. A fault 
tree is used to represent a binary system. A binary 
system is a system in which all components and the 
entire system are assumed to be either completely 
operational or completely failed. A binary system is 
denoted F where X is the set of components and F is a 
binary function of the component states. 

The Shannon decomposition is the following 
identity:  

F = x · Fx  +  x'· Fx' (1) 
where F is any Boolean function of coherent or non-
coherent fault tree, x is a variable, x' is the complement 
of x, and Fx and Fx', are F with the argument x set equal 
to 1 and to 0 respectively. The terms Fx and Fx', are 
sometimes called the positive and negative Shannon 
cofactors, respectively, of F with respect to x.  

A more explicit way of stating the Shannon 
decomposition is: 

F(x1, x2, …, xn) = x1· F(1, x2, …, xn)  + 
x1'· F(0, x2, …, xn).                  (2) 

In Exclusive OR (XOR) form, Eq. (2) also holds when 
the disjunction “+” is replace by the XOR operator ⊕: 

F(x1, x2, …, xn) = x1· F(1, x2, …, xn)  ⊕ 
x1'· F(0, x2, …, xn).                (3) 

Repeated application for each argument leads to the 
Sum of Products (SOP) canonical form of the function 
F. For n = 2 that would be 

F(x1, x2) = x1· F(1, x2) + x1'· F(0, x2) 
 = x1 x2· F(1, 1) + x1 x2'· F(1, 0) + 

x1' x2· F(0, 1) + x1' x2'· F(0, 0).          (4) 
By N/2 decompositions respect to arbitrarily selected 

variables, we can get N decomposed functions which 
are mutually exclusive. The Boolean function F of the 
original fault tree can be expressed in terms of the 
decomposed trees and their conditional events as 

F(X) = X1· F1 ⊕ X2· F2 ⊕   …   ⊕ XN· FN        (5) 
where 

F(X) : original fault tree 
Xi : i-th condition event of which argument is set 

equal to 1 or 0 
Fi : conditional event of F(X) given the i-th condition 

event  ( Fi | Xi ) 
Because the union of all the condition events is the 
universal set and each condition event is mutually 
exclusive, then  

Pr(X1) + Pr(X2) + … + Pr(XN) = 1.              (6) 
From Eq. (5), the probability of the top event of an 
original fault tree can be calculated as follows: 

Pr[F(X)] = Pr(X1) Pr(F1) + Pr(X2) Pr(F2) + … 
 + Pr(XN) Pr(FN).                            (7) 

If all the conditional events of F (Fi, i = 1, …, N) 
without exception are OMEGA events (i.e., Pr(Fi) = 1) 
or PHI events (i.e., Pr(Fi) = 0), Eq. (5) is an equivalent 
Sum of Disjoint Products (SDP) [2,4] of the original 
fault tree. This SDP reduces the probability evaluation 
to a simple summation. 

The exact analysis of complex fault trees is a very 
difficult task. Many methods have been defined to 
reduce computation time and working memory usage. 
A complex fault tree is recursively decomposed into a 
set of mutually exclusive simpler fault trees until their 
dimensions are compatible with the available working 
memory size. Then, the results of the analysis of all 
generated simpler trees are composed to obtain the 
results for the original un-decomposed fault tree. 

3. Independent Logic Trees

Fault tree analysis is a top-down approach to failure 
analysis, starting with a potential undesirable event 
called a TOP event, and then determining all the ways it 
can happened. The causes of the TOP event are 
connected through logic gates. In this paper we only 
consider AND-, OR-, k/n-, NAND-, and NOR-gates. 



Let Ei denote that input event i occurs, and Pi = 
Pr(Ei). The input events are basic events or gate events. 
When the input events of a gate are mutually 
independent, we can get the exact probability of the 
gate event. This gate is called “independent gate” in this 
paper. 

When we have a single gate with n mutually 
independent input events, we can get the exact 
probability of the gate using Table 1. 

Table 1. Probability calculation for independent gates 
gate symbol probability of gate 
AND * P1 P2 … Pn

OR + 1 – (1-P1) (1-P2) … (1-Pn) 
k out of n k See Table 2 
NAND & 1 - P1 P2 … Pn 
NOR % (1-P1) (1-P2) … (1-Pn) 

Table 2. Probability of example k-out-of-n gates 
k n probability of gate 
2 3 P1P2 + P1(1-P2)P3 + (1-P1)P2P3 
2 4 P1P2 + P1(1-P2)P3 + P1(1-P2)(1-P3)P4

+ (1-P1)P2P3 + (1-P1)P2(1-P3)P4

+ (1-P1)(1-P2)P3P4 
3 4 P1P2P3 + P1P2(1-P3)P4 + P1(1-P2)P3P4 

+ (1-P1)P2P3P4 

When all the gates of a fault tree are independent 
logic gates, this tree is called an “Independent Logic 
Tree (ILT)” in this paper. We can get the exact top 
event probability of an ILT by simple calculations in 
bottom-up order. 

The bottom-up algorithm is the simplest algorithm 
that computes the probability of failure of the top event. 
It starts at the bottom of the tree and compute the 
probability of failure of each gate based on its logic and 
the probabilities of its inputs. It moves upward and 
solves the tree at each level until the top event is 
reached. If a basic event appears multiple time in 
different places in the fault tree, the estimated 
probability of failure by the bottom-up algorithm is 
incorrect. 

If a fault tree has no multiple occurring basic event 
(MOE), the fault tree must be an ILT. Then we can get 
the exact top event probability of the tree by the 
bottom-up algorithm. 

4. Decomposition to ILTs

A large fault tree includes thousands of gates, basic 
events, and MOEs. The probability of the top event in a 
simple fault tree that does not include MOE can be 
computed using the bottom-up method.  

In order to decompose a complex fault tree into 
simple ILTs, the DILT software is developed in this 
study.  

The process of decomposing a tree to the positive 
and negative Shannon cofactors can be broken down 
into the following stages: 
1. selecting a pivot basic event xi
2. decomposing the tree with respect to xi
3. simplifying two decomposed trees
4. ascertaining whether the decomposed tree needs

further decomposing 
For each decomposition of an input tree, DILT

selects a pivot basic event from the MOEs of the tree. 
DILT decomposes the tree with respect to the selected 
basic event. DILT also simplifies the two decomposed 
trees by merging and subsuming. Then the decomposed 
trees are new input trees for next decompositions. If a 
decomposed tree is ILT, PHI event or OMEGA event, 
the decomposed tree is no longer a next input tree. 

At the end of decomposition, there are no input tree 
to be decomposed. Then the exact probability of the top 
event of an original fault tree can be calculated by Eq. 
(7). 

5. Application to Seismic IE Calculation

In order to assess applicability of the proposed 
method, an example SPSA result is selected:  

• Seismic pre-ET: Fig. 1
• # of headings in ET: 7 (Fig. 1)
• Seismic induced IEs: 7 (Fig. 1)
• Seismic induced events: 26 (Table 3)
• # of random basic events in pre-ET: 2

- SLLOCA (mean = 0.00033, EF = 4.9)
- OPHR (mean = 0.01, EF = 10)

Table 3. SSC Fragility Results 

event Am βR βU event Am βR βU 
SLOOP 0.3 0.3 0.45 ECWPF 2.78 0.35 0.34 
SRTRC 0.72 0.3 0.32 ESFAF 4.41 0.38 0.85 
SRTSF 1.08 0.35 0.37 SILSF 2.06 0.35 0.38 
SCCSF 1.24 0.35 0.36 SLCRC 1.61 0.35 0.49 
SBCRC 1.08 0.3 0.33 SLCSF 2.42 0.35 0.5 
SBCSF 1.62 0.35 0.37 SBRRC 0.8 0.31 0.33 
SDGCC 1.35 0.35 0.37 SBRSF 1.2 0.35 0.37 
SCSTC 0.92 0.16 0.33 ECWCF 0.7 0.37 0.36 
SSWRC 1.36 0.3 0.35 SECT 0.84 0.3 0.36 
SSWSF 1.67 0.35 0.4 ESWXF 1.23 0.31 0.39 
CCWAF 1.66 0.37 0.38 SITSF 0.98 0.21 0.46 
SACBC 1.84 0.37 0.38 SSWIT 2.33 0.41 0.45 
CCWPF 2.65 0.42 0.53 SICPB 1.5 0.3 0.3 

The event tree of Fig. 1 is complex and non-coherent 
because the headings are not mutually independent. The 
end-states of the event tree are seismic induced IEs. The 
Boolean logics of the IEs (i.e., SQ 2 ~ SQ8) are written 
in Table 4. For example, SQ2 is a complex and non-
coherent fault tree problem.  

Table 5 is a set of decomposed ILTs equivalent to 
SQ2. Using Table 5 which is obtained by the DILT 
software, the exact probability of SQ2 is calculated by 
simple summation.  
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Fig. 1. Example of seismic pre-ET 

Table 4. Boolean equation for ET (Fig. 1) 

SQ8 * GLC 
SQ7 * GLEP -GLC 
SQ6 * SCSTC -GLEP -GLC 
SQ5 * GLCW -SCSTC -GLEP -GLC 
SQ4 * SICPB -GLCW -SCSTC -GLEP -GLC 
SQ3 * GLL -SICPB -GLCW -SCSTC -GLEP -GLC 
SQ2 * SLOOP -GLL -SICPB -GLCW -SCSTC -GLEP -GLC 
SQ1 * -SLOOP -GLL -SICPB -GLCW -SCSTC -GLEP -GLC 
GLL * SLLOCA SITSF 
GLCW + GLOCCW GLOECW 
GLOCCW + CCWPF CCWAF 
GLOECW + GAHU ECWPF ECWCF SECT ESWXF 
GAHU * ESFAF OP-HR 
GLEP + SCCSF SBRSF G120VAC G480VAC G416KVAC 
G120VAC * GCHAGER GXFMX  
G480VAC + G480VRELAY SLCSF 
G416KVAC + G416KVRELAY SSWSF 
GCHAGER + GCHGRELAY SBCSF  
GXFMX + GXFMRRELY SRTSF 
G480VRELAY * SLCRC OP-HR 
G416KVRELAY * SSWRC OP-HR 
GCHGRELAY * SBCRC OP-HR 
GXFMRRELY * SRTRC OP-HR 
GLC + SACBC SILSF SSWIT 

Table 5. Decomposed trees equivalent to SQ2 
(Bottom-up ordered tree logics) 

G13 + SRTRC SRTSF  
G12 + SBCRC SBCSF  
G09 * G12 G13  
G03 * SITSF SLLOCA  
G02 % SCCSF SCSTC SSWRC SSWSF CCWAF SACBC 

CCWPF ECWPF ESFAF SILSF SLCRC SLCSF SBRSF 
ECWCF SECT ESWXF SSWIT SICPB G03 G09 

SQ2-1 * SLOOP G02 OPHR 

G09 * SRTSF SBCSF  
G03 * SITSF SLLOCA  
G02 % SCCSF SCSTC SSWSF CCWAF SACBC CCWPF 

ECWPF SILSF SLCSF SBRSF ECWCF SECT ESWXF 
SSWIT SICPB G03 G09  

SQ2-2 * SLOOP G02 -OPHR 

Table 6 is a set of Boolean equations equivalent to 
SQ2 which is provided in Example PSA report. It is an 
input for the PRASSE code. 

Table 7 is a comparison of SQ2 quantification 
between the 2 disjoint ILTs for DILT and the 14 
disjoint equations for PRASSE, respectively. It shows 
that two types of Boolean equations are equivalent to 
each other. 

Table 6. PRASSE input for SQ2 (LOOP) 
1. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 

SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF SBCSF -SRTSF OP-HR -SLCRC -SSWRC 
-ESFAF -SRTRC 

2. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF SBCSF -SRTSF -OP-HR 

3. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF -SBCSF SRTSF OP-HR -SLCRC -SSWRC 
-ESFAF -SBCRC 

4. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF -SBCSF SRTSF -OP-HR 

5. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC 
-ESFAF SBCRC -SRTRC 

6. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC 
-ESFAF -SBCRC 

7. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
SITSF -SLLOCA -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF 
-ECWCF -SECT -ESWXF -SBCSF -SRTSF -OP-HR 

8. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF 
-SECT -ESWXF SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF 
-SRTRC 

9. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF 
-SECT -ESWXF SBCSF -SRTSF -OP-HR 

10 -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF     
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF           
-SECT -ESWXF -SBCSF SRTSF OP-HR -SLCRC -SSWRC -ESFAF    
-SBCRC  

11. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF             
-SECT -ESWXF -SBCSF SRTSF -OP-HR  

12. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF             
-SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF 
SBCRC -SRTRC  

13. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF             
-SECT -ESWXF -SBCSF -SRTSF OP-HR -SLCRC -SSWRC -ESFAF     
-SBCRC  

14. -SCSTC -SICPB SLOOP -SACBC -SILSF -SSWIT -SCCSF -SBRSF 
-SITSF -SLCSF -SSWSF -CCWPF -CCWAF -ECWPF -ECWCF -SECT 
-ESWXF -SBCSF -SRTSF -OP-HR 

Table 7. SQ2 probabilities using Table 5 and 6 

Pr(Ei) DILT PRASSE 
0.1 1.9593734E-02 1.9593734E-02 
0.3 9.2428376E-04 9.2428376E-04 
0.5 4.6044588E-06 4.6044588E-06 
0.7 8.0039493E-10 8.0039497E-10 
0.9 3.2520647E-18 3.2520761E-18 

5. Conclusions

The exact analysis of complex and non-coherent 
Boolean equations (e.g., event tree) is a very difficult 
task. This study developed a method to exactly quantify 
complex Boolean equations based on the Shannon 
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decomposition technique and the characteristics of 
Independent Logic Tree (ILT). This method was 
implemented in the DILT software. DILT can treat the 
5 types of logic gates: AND-, OR-, k/n-, NAND-, and 
NOR-gates. Non-coherent fault trees can be expressed 
by NAND-, and NOR-gates. The DILT software 
converses an original tree into the equivalent set of 
decomposed ILTs and disjoint products. The output of 
DILT is easily understandable and simpler than disjoint 
equations of the PRASSE code.  
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