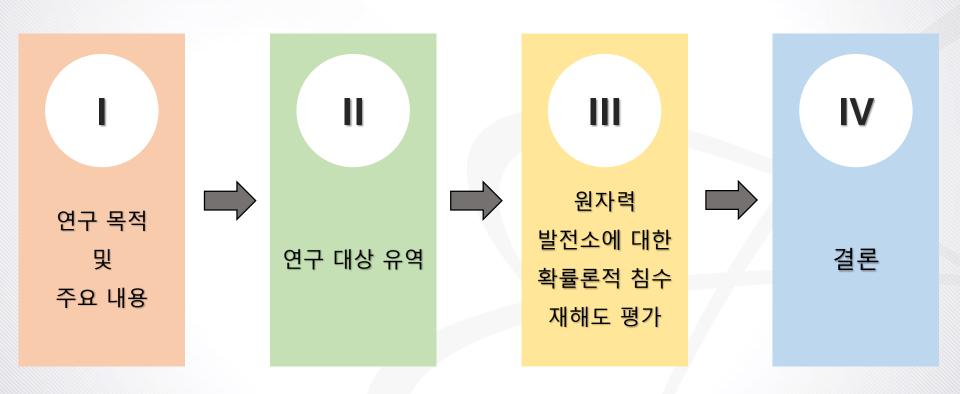


Probabilistic External Flood Hazard Assessment at NPP Site

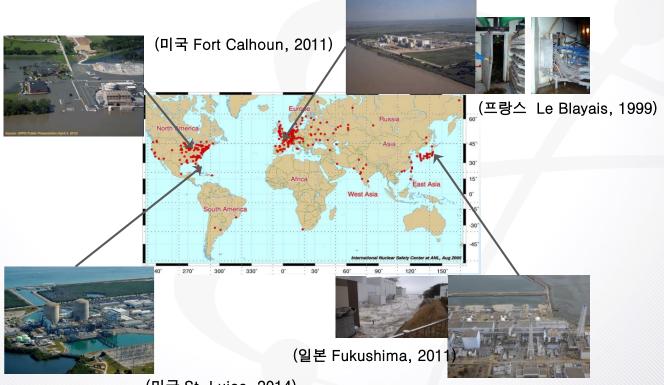
• • • •


2020. 12. 17

Beomjin Kim¹, Minkyu Kim¹, Daegi Hahm¹, Junhee Park¹, Kun-yeun Han²

- ¹ Structural Safety and Prognosis Research Division (KAERI)
- ² Kyungpook National University

목 차



연구 배경 및 필요성

- □ 21세기 들어 증가하고 있는 이상기후 현상은 우리나라뿐만 아니라 전 세계적인 추세를 보이고 있다. 이상기후현상으로 인해 2016년 10월 기록을 경신한 한국에 발생한 태풍 '차바'를 비롯하여 미국에서 발생한 초강력 허리케인 '매튜', 아이티에 발생한 '매슈', 대만에 발생한 '므란티' 등 강력한 슈퍼태풍의 발생빈도는 점점 잦아지고 있는 추세임
- 집중호우는 1970~80년의 221회에 비해 1999~2008년에 1.7배 증가된 385회로 증가.(National Institute of Meteorological Sciences, 2019)
- □ 국외에서 일어난 원자력 발전부지 침수 사고의 사례들의 사례
- 1999년도 프랑스 Le blayais 원자력 발전소는 허리케인 마틴에 의해 강한 바람을 동반한 높은 파고에 의하여 원전부지내 침수가 일어난 사고.
- 미국에서는 2014년도 St. Luice 원자력 발전소에서 홍수대비 배수시스템의 작동 오류로 인하여 원자로 보조건물에 물이 유입됨.

연구 배경 및 필요성

- 2011년에 미국 미주리 강에 인접한 Fort Calhoun 원자력 발전소는 미주리강의 홍수에 인해 원자력 발전 부지가 침수됨
- 2011년 3월 11일 일본의 도후쿠 지방에 태평양 해역지진이 발생함에 따라 Fukushima 원자력 발전소에 지진발생 후 높이 15m의 지진 해일이 발전소를 덮치면서 원전 부지가 침수되어 원전부 지 내의 모든 전기시설이 손상됨

연구 배경 및 필요성

□ 본 연구의 목적은 원자력발전소의 극한강우조건하에서 외부침수 의해 발생되는 홍수 피해를 수리·수문학적 모형을 연계한 확률론적 홍수해석기법에 근거한 리스크 평가 를 위한 침수 재해도 곡선을 제시함

연구 대상 유역

대상 유역 및 기본자료

- □ 원자력 발전소는 총 4곳으로 전남 영광군에 영광 원자력발전소, 경북 울진군 부구리에 한울 원자력발전소, 경북 경주시 양남면에 월성 원자력발전소, 부산 기장군에 고리 원자력 발전소가 위치되어 있음
- □ 고리 원자력발전소의 경우 쯔나미와 해일을 방지하기 위해 해안 쪽 부지에 약 10m의 방벽이 설치 되음
- □ 방벽으로 인해 외부에서 유입된 홍수량이 빠져 나가지 못하고 저류 되는 상황을 초래 할 것으로 판단되어 본 연구의 대상지역을 고리 원자력발전소로 선정함

연구 대상 유역

대상 유역 및 기본자료

<원자력발전소 위치도 및 대상유역>

강우-유출 분석

- □ 본 연구에서 기후변화를 고려한 재현기간별(100년, 500년, 1000년, 5000년, 10000년, 10000년, 10000년, 10000년, 1000만년, 1000만년)-지속시간(1시간, 2시간, 3시간, 4시간, 5시간)에 따른 확률강우량은 울산(152)지점을 사용함
- □ 확률강우량을 분석한 결과 지속시간 1시간대의 확률강우량이 PMP(Probable Maximum Precipitation, PMP)값과 비교하였을 때 작게 나타나는 경향을 보이므로 이에 대한 보정 필요하다고 판단함

재현기간 지속기간	100년	500년	1,000년	5,000년	10,000년	100,000년	500,000년	1,000,000년	10,000,000년
10분							-	-	-
1시간	90.4	111.5	120.8	143.0	152.8	186.5	211.2	222.1	259.5
2시간	142.1	177.1	192.7	230.4	247.2	305.9	349.7	369.3	437.4
3시간	176.6	219.1	238.0	282.9	302.8	371.5	421.9	444.2	521.1
4시간	204.2	253.4	275.1	326.9	349.7	428.5	486.1	511.7	599.3
5시간	227.9	283.8	308.5	368.0	394.4	486.0	553.6	583.9	688.0
6시간	248.3	310.7	338.7	406.3	436.6	542.6	621.9	657.7	782.0
7시간	266.0	335.0	366.2	442.2	476.5	598.1	690.3	732.2	879.5
8시간	282.1	357.9	392.4	477.6	516.5	656.1	763.9	813.1	989.6
9시간	297.5	380.7	419.1	514.9	559.3	721.2	849.2	908.2	1124.5
10시간	312.9	404.3	447.1	555.4	606.3	795.7	949.0	1020.7	1289.5
11시간	327.7	427.3	474.6	595.7	653.3	871.2	1051.4	1136.7	1461.7
12시간	341.2	448.0	499.1	631.3	694.6	937.2	1140.5	1237.7	1611.2

	PMP	
지속시간	기존	RCP8.5
1시간	175.8	280.4
2시간	261.8	341.6
3시간	330.4	413.6
4시간	389.8	498.6
5시간	443.1	560.5
6시간	492.0	604.7
7시간	537.5	653.3
8시간	580.4	711.0
9시간	621.0	774.7
10시간	659.8	840.0
11시간	696.9	900.1
12시간	732.6	947.3

<기존 울산지점의 확률강우량과 PMP>

강우-유출 분석

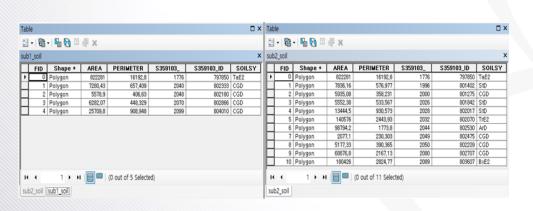
- □ 지속시간 1시간의 확률강우량을 재산정하기 위해서 두 개의 변량 x와 y사이에서 함수관계가 존재한다고 할 때, 그 인과관계를 수량적으로 파악하는데 사용되는 최소자 승법을 사용함
- □ 지속시간 1시간의 확률강우량을 재산정하기 위해서 재현기간 100년~10⁷년에 따른 지속시간 2~6시간까지의 시나리오를 최소자승법으로 분석한 결과 Japenese typelll 가 가장 적합한 것으로 판단함

계현기간 지속시간	100yr	500yr	1000yr	5000yr	10000 _{AT}	10000gr	5000g _T	10 ⁻⁶ yr	10 ⁻⁷ yr
1시간	100	123.9	134.5	160.1	171.5	211.2	240.9	254.1	300.4
2시간	142.1	177.1	192.7	230.4	247.2	305.9	349.7	369.3	437.4
3시간	176.6	219.1	238.0	282.9	302.8	371.5	421.9	444.2	521.1
4시간	204.2	253.4	275.1	326.9	349.7	428.5	486.1	511.7	599.3
5시간	227.9	283.8	308.5	368.0	394.4	486.0	553.6	583.9	688.0

<재산정한 울산지점의 확률강우량>

강우-유출 분석

□ 시나리오별 홍수량 산정을 위해 수리·수문모형인 Hec-HMS를 이용하여 원전부지의 ArcGIS분석 도구를 활용하여 등고선에 따라 총 2개의 소유역으로 분할하여 극한 홍수량을 분석함.

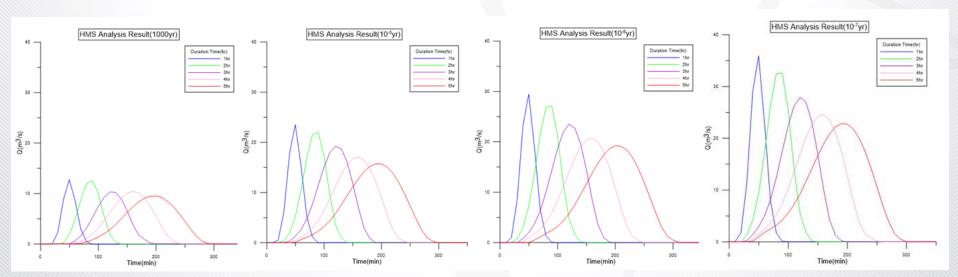

<원전부지 배면 소유역 분할>

강우-유출 분석

- □ Hec-HMS를 구축하기전 기초 데이터로 도달시간과 저류상수(K), CN 산정하였다. 도달시간(hr)은 유입시간에 유하시간이 더한 시간으로써 유입시간은 소하천 기본계획을 참고하여 5분이라 산정하고 Kraven-II(연속형) 공식을 사용하여 유로연장과 평균유속으로 산정함
- □ 소유역 1의 경우 유로연장은 0.37 km이며, 평균유속은 4.5 m/s로 유하시간은 1.39 min으로 산정되어 도달시간은 0.11 hr로 산정됨
- □ 소유역 2의 경우 유로연장은 1km이며, 평균유속은 3.5 m/s로 유하시간은 4.77 min으로 산정되어 도달시간은 0.16 hr로 산정됨.
- □ 저류상수(K)의 경우 Sabol 공식을 사용하여 도달시간과, 유역면적, 유역길이에 따라 소유역 1은 0.08, 소유역 2는 0.14로 산정함.

강우-유출 분석

- □ CN값 산정을 위해 ArcGIS분석도구를 활용하여 정밀토양도와 토지이용도를 분류한 각각의 면적들을 산정함
- □ 토양도와 토지이용도를 중첩시켜 각각의 분류된 면적들에 대한 토지이용상태별에 따라 A~D형으로 분류함
- □ 분석결과 소유역1에 대한 CN값은 78, 소유역2에 대한 CN값은 79.4로 분석됨

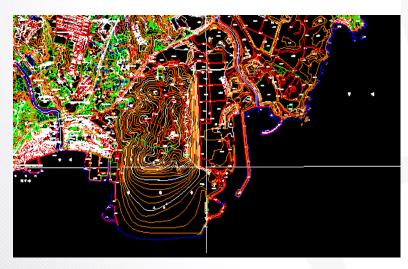


<토양도와 토지이용도의 중첩>

강우-유출 분석

- 소유역1의 경우 지형조건에 따라 유출량이 원자력발전소 주차장쪽으로 전파되는 경향을 보이므로, 본 연구에서는 소유역2의 홍수량이 원자력발전소에 영향을 미칠것으로 판단함.
- □ 소유역2에 대해 재현기간 100년, 500년, 1000년, 5000년, 1만년, 10만년, 50만년, 100만년, 1000만년에 대한 지속시간 1~5시간까지의 총 45개의 시나리오에 대한 수 문분석을 실시하고 유출수문곡선을 산정

강우-유출 분석

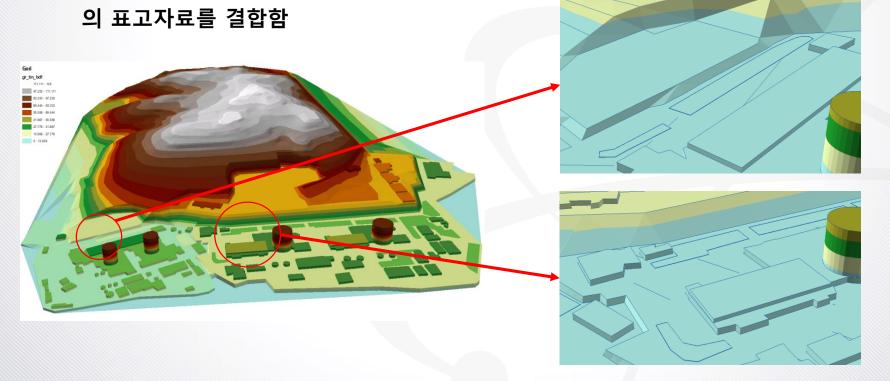

- □ 강우 유출 분석 시 원전부지의 배수관망 자료의 설계도를 참고하여 볼륨을 계산하고 적용함
- □ 분석결과 100년 빈도일 경우 2시간일 때 8.5 m³/sec을 제외하고 500년~1000만년까지 각각 1시간일 때 11.3 m³/sec, 12.8 m³/sec, 16.3 m³/sec, 17.9 m³/sec, 23.5 m³/sec, 27.6 m³/sec, 29.5 m³/sec, 35.9 m³/sec로 나타남
- □ 따라서 원전부지의 경우 홍수저류 목적이 아닌 홍수방어의 목적을 두고 분석해야 될 것으로 판단되며, 첨두유출량이 가장 큰 1~2시간 사이를 임계지속시간으로 판단함

Duration		Return Period											
Time	100yr	500yr	1000y.r	5000yr	10000yr	100000 _{07.}	50000 ₀ π	10 ⁻⁶ yr	10 ⁻⁷ yr				
	m ³ /sec	m³/sec	m³/sec	m³/sec	m³/sec	m³/sec	m³/sec	m³/sec	m³/sec				
1hr	8.11	11.31	12.81	16.31	17.91	23.51	27.61	25.51	35.91				
2hr	8.51	11.31	12.61	15.71	17.11	21.91	25.51	27.11	32.61				
3hr	7.81	10.31	10.31	14.11	15.21	19.21	22.21	23.51	29.91				
4hr	7.21	9.41	10.41	12.71	13.71	17.11	19.71	20.81	24.61				
5hr	6.61	8.61	9.51	11.61	12.51	15.71	18.11	19.21	22.81				

<강우 유출 분석 결과 최대값>

상세 지형구축

- □ 2차원 외부침수에 대한 홍수해석을 분석하기에 위해 1:5000수치지도 및 인공위성 사진, 원전부지 설계도를 이용함
- □ 원자력발전소의 경우 추출한 등고선과 타점자료에는 원전부지의 지형자료는 나타나 지 않는다. 따라서 인공위성 자료와 원자력발전소의 설계자료를 참고함.



<원자력발전소의 수치지도와 대상부지의 설계도와 위성사진 중첩>

상세 지형구축

□ 원자력 발전소 내의 건물 및 구조물의 형상을 반영하기 위해서 인공위성 사진에 나타나있는 건물 및 시설물을 Digitizing하여 도면상의 구조물을 polygon 형태의 디지털자료로 변환한 후 지형이 구축된 TIN 결과물에 건물 및 시설물의 표고자료와 지도상

<지형자료(경사)와 건물표고(연석, 시설물, 건물 등)를 고려한 TIN>

외부침수 홍수해석

- □ 2차원 홍수해석을 위해 원전부지에 대해서 3 m×3 m의 그리드의 격자를 생성함
- □ 격자 생성 시 원전부지의 외부시설물에 대한 주요기기를 파악하고 그 시설물들이 포 함되도록 경계조건을 산정함
- □ 산정된 강우에 의한 홍수량을 발전소 부지 내 유입 경계조건으로 고려하였고, 강우조 건은 GEV형 강우조건을 사용하여 총 강우량을 분포시켜 분석
- □ 발전소의 해안부분은 약 10 m의 방벽으로 둘러싸져 있으며 이를 고려하여 지형과 유입 경계조건 및 강우조건을 고려함

<원전부지 경계조건>

외부침수 홍수해석

- □ 강우조건은 기후변화를 고려한 GEV분포형(RCP8.5)에 의한 지역빈도해석을 통한 강우를 적용하고, HEC-HMS분석결과인 홍수량을 바탕으로 100년~1000만년 총 9개의 빈도와 지속시간 1~5시간의 총 45개의 시나리오를 구성함
- □ 총 모의 시간은 12hr으로 원전부지 대해 2차원 분석을 실시하고, 재현기간별-지속시 간에 따른 최대 침수심을 산정함

외부침수 홍수해석

<100y>

<500y>

<1000y>

<5000y>

<10000y>

<100000y>

<500000y>

<10⁶y>

 $<10^{7}y>$

<지속시간 1시간에 대한 원자력발전소 외부침수해석 결과 최대 침수심>

외부침수 홍수해석

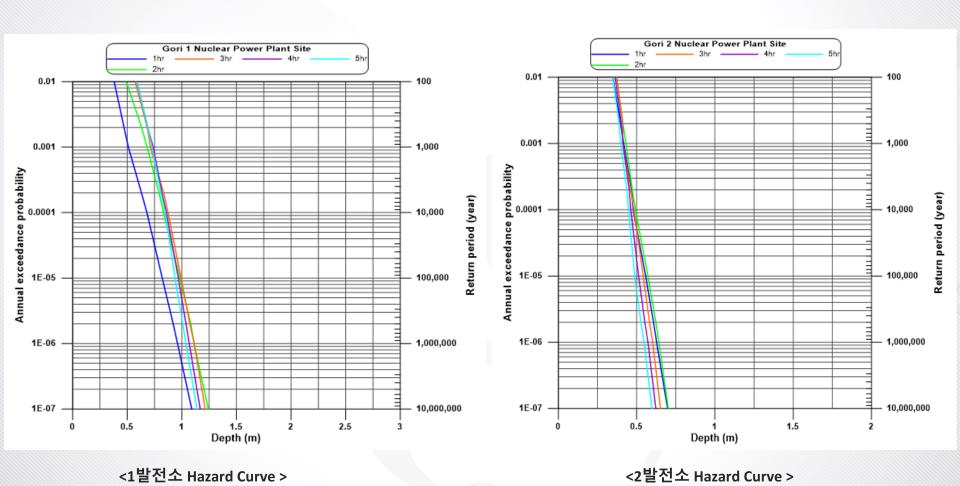
□ 원자력발전소의 극한 강우조건에 대한 100년~1000만년까지의 2차원 홍수해석 결과 침수심이 가장 높게 발생하는 지점을 찾고 그 지점에 대한 재현기간별-지속시간에 따른 최대 침수심을 산정함.

<원전부지의 최대 침수짐 지점>

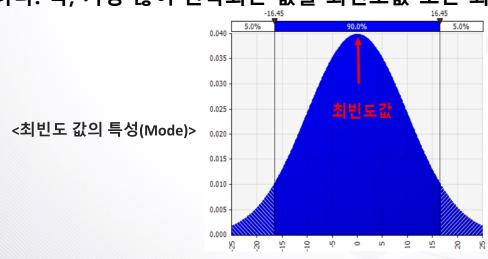
외부침수 홍수해석

Dusation			R	eturn Per	riod (Grid No. 8870)					
Duration Time	100yr	500yr	1000yr	5000yr	10000yr.	100000 _{NT}	50000 _{AT}	10 ⁻⁶ yr	10 ⁻⁷ yr	
	m	m	m	m	m	m	m	m	m	
1hr	0.380	0.470	0.510	0.630	0.680	0.820	0.920	0.960	1.090	
2hr	0.490	0.630	0.680	0.790	0.830	0.980	1.080	1.110	1.240	
3hr	0.570	0.680	0.710	0.830	0.870	0.990	1.070	1.110	1.210	
4hr	0.590	0.690	0.740	0.820	0.860	0.970	1.040	1.070	1.170	
5hr	0.590	0.690	0.730	0.810	0.850	0.940	1.010	1.040	1.140	

<재현기간별-지속시간에 따른 최대침수심<1발전소>


Dustics		Return Period (Grid No. 15007)											
Duration Time	100yr	500yr	1000yr	5000yr	10000yr	100000ja	500000 _{AT}	10 ⁻⁶ yr	10 ⁻⁷ yr				
	m	m	m	m	m	m	m	m	m				
1hr	0.350	0.400	0.420	0.470	0.480	0.560	0.610	0.630	0.700				
2hr	0.370	0.410	0.430	0.470	0.490	0.570	0.620	0.640	0.700				
3hr	0.370	0.410	0.410	0.460	0.480	0.540	0.580	0.600	0.650				
4hr	0.360	0.400	0.410	0.450	0.460	0.510	0.550	0.570	0.620				
5hr	0.350	0.390	0.400	0.440	0.450	0.490	0.530	0.550	0.600				

<재현기간별-지속시간에 따른 최대침수심<2발전소>


외부침수 홍수해석

- □ 실제 2014년 8월 25일 시간당 134 mm의 집중호우로 인한 최대 침수심이 290 mm이며, 본 연구의 1000년 빈도의 134.5 mm의 침수해석결과 평균 최대 침수심이 340 mm나타났으며, 홍수량의 배수조건 및 유입경로 유속방향을 참고 하였을 때 본 연구의 모형이 타당하다고 판단함.
- □ 외부침수사건 발생 시 각 발전소별 최대 침수심을 포함하는 재현기간별-지속시간에 따른 재해도 곡선을 제시함.

외부침수 홍수해석

- □ 본 연구에서는 유역조건, 강우조건, 지형조건, 경계조건 등의 다양한 불확실성에 근 거하여 시나리오별로 분석된 결과를 통한 확률론적 위험도 평가를 위한 침수 재해도 곡선 추정방법에 대한 목적
- □ 어떠한 사건이 발생하여 재해를 발생시키는 값을 확률분포형을 적용하여 최빈도값 (Mode)을 적용한 재해도 곡선(Hazard Curve)을 산정함
- □ 최빈도값은 분포형의 가운데 부분이 최빈값이라고도 하며, 가장 자주 발생되는 값을 뜻하다. 즉, 가장 많이 관측되는 값을 최빈도값 또는 최빈값이라고 한다.

PFHA(Probability Flood Hazard Assessment)

□ 확률론적 외부침수에 대한 재해도 곡선을 산정하기 위해서 2차원 외부침수분석결과 고리 1발전소와 2발전소에서 가장 침수심이 크게 나타나는 구역의 침수심을 대표 침수심으로 선정함

<발전소별 최대 침수심 구역>

PFHA(Probability Flood Hazard Assessment)

□ 선정한 구역내의 최대 침수심값들 도출하고 그 도출된 값들에 대한 상관관계 분석을 실시함

<재현기간별 최대 침수심구역의 상관관계(1발전소) >

Corre- lation	100yr	500yr	1000yr	5000y.r	10000yr	10000) _{AT}	50000) _{et}	10 ⁻⁶ yr	10 ⁻⁷ y.r
100yr	1.000					-			-
500yr	0.981	1.000	-	-	-	-	-	-	-
5000yr	0.972	0.978	1.000		-	-	-		
1000yr	0.667	0.679	0.698	1.000	-	-	-		-
10000yr	0.633	0.649	0.671	0.984	1.000	-	-	-	-
100000yr	0.128	0.138	0.174	0.625	0.660	1.000	-		
50000yr	0.077	0.101	0.125	0.476	0.491	0.915	1.000		
10 ⁻⁶ yr	0.105	0.129	0.153	0.562	0.593	0.971	0.981	1.000	-
10 ⁻⁷ yr	0.051	0.063	0.099	0.399	0.435	0.928	0.975	0.968	1.000

<재현기간별 최대 침수심구역의 상관관계(2발전소)>

_									
Corre-	100yr	500yr	1000	5000	10000yr	100000 ₀₇	50000ar	10 ⁻⁶ yr	10 ⁻⁷ yr
lation	TOOY	SOUYE	1000yr	5000yr	Idday	idddyr.	THUM!	10 yr	10 yr
100yr	1.000		-		-	-	-	-	
500yr	0.899	1.000			-	-		-	
5000yr	0.509	0.711	1.000		-	-			
1000yr	0.531	0.790	0.888	1.000	-	-	-	-	-
10000yr	0.562	0.813	0.840	0.957	1.000	-	-	-	
100000 _A T	0.425	0.704	0.850	0.957	0.969	1.000	-	-	-
500000yπ	0.381	0.663	0.825	0.940	0.955	0.994	1.000	-	
10 ⁻⁶ yr	0.381	0.663	0.825	0.940	0.955	0.994	1.000	1.000	-
10 ⁻⁷ yr	0.330	0.624	0.801	0.933	0.935	0.987	0.990	0.990	1.000

PFHA(Probability Flood Hazard Assessment)

- □ 재현기간별-지속시간에 따른 침수심에 확률분포형을 검증하기 위해 AIC(Akaike's Information Criterion)방법을 적용함.
- □ AIC방법은 여러 통계 모델들의 성능을 비교해주는 방법이며 여러 통계 모델의 순위를 매겨서 AIC값이 작을수록 가장 적합한 모형임
- □ AIC값을 해석하는 방법은 Burnham과 Anderson(2003)은 아래 표와 같이 분석함.

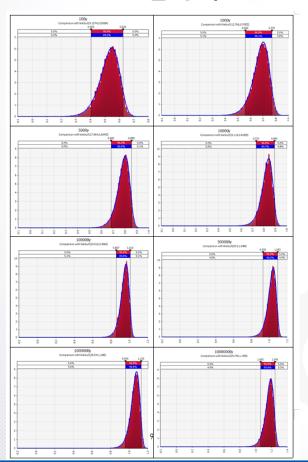
<AIC 검증 기준>

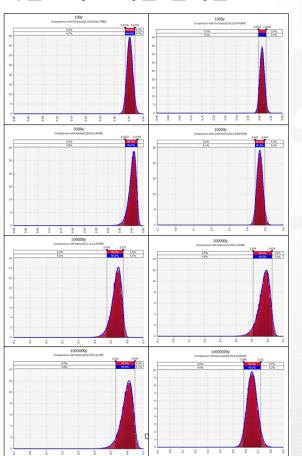
ΔAIC	모형의 직합성
ΔAIC < 2	충분히 적합
$3 \land \Delta AIC \land 7$	적합하다는 충분한 근거 부족
$\Delta AIC > 10$	적합하지 않음

- □ 고리 1발전소와 2발전소의 최대 침수심에 대한 분포형을 선정하기 위해서 분포형의 적합도 분석 시 Lower Limit은 0으로 지정하고, Bootstrap방식을 사용하여 통계모형 의 적합도를 분석함
- □ 분포형 적합도 검증결과 1발전소 경우 Rank#1의 통계모형은 Weibull로 선정됨
- □ 2발전소의 경우 Rank#1의 통계 모형은 Invgauss, Weibull, Gamma로 선정됨

PFHA(Probability Flood Hazard Assessment)

				R	etum Peri	iod			
Rank	100y	500y	1000y	5000y	10000y	100000y	50000y	10-6yr	10-бул
#1	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull	Weibull
#2	Triang	Ganma	Gamma	Gamma	Gamma	Gamma	Gamma	Gamma	Ganma
#3	Gamma	Lognorm	Lognorm.	Lognorm	Lognorm	Lognorm	Invgauss	Invgauss	Invgauss
#4	Invgauss	Invgauss	Invgauss	Invgauss	Invgauss	Invgauss	Lognorm	Lognorm	Lognorm
#5	Lognorm	Triang	Pearson5	Pearson5	Pearson5	Triang	Triang	Triang	Triang
#6	Pearson5	Pearson5	Triang	Triang	Triang.	Uniform	Uniform	Uniform	Uniform
#7	Uniform	Pearson6	Uniform	Uniform	Uniform	Expon	Expon	Expon	Expon
#8	Expon.	Uniform	Expon	Expon	Expon	Levy	Lew	Levy	Levy
#9	lew	Expon	Levy	lew	Levy	BetaGen eral	BetaGen eral	-	BetaGene ral
#10	BetaGen eral	Levy	-	BetaGen eral	BetaGen eral	-	-	-	-


<1발전소 통계모형 검증 결과>


				R	eturn Peri	iod			
Rank	100y	500y	1000y	5000y	10000y	100000y	50000y	10-6yr	10-6уг
#1	Invgauss	Invgauss	Invgauss	Weibull	Gamma	Weibul	Weibull	Weibull	Gamma
#2	ognorm	ognorm	Lognorm	Gamma	Invgauss	Gamma	Gamma	Gamma	Invgauss
#3	Gamma	Gamma	Ganma	nygauss	Lognorm	Invgauss	Invgauss	Invgauss	Lognorm.
#4	Loglogistic	Weibull	Loglogistic	ognorm	Weibull	Lognorm	Lognorm.	ognorm	Weibull
#5	Weibull	Loglogistic	Weibull	Beta General	Triang	Beta General	Beta General	Beta General	Triang
#6	Triang	Triang	BetaGen eral	Triang	niform	Triang.	Triang	Triang	Uniform
#7	niform	Uniform	Triang.	Uniform	Expon	niform	Uniform	niform	Expon.
#8	Expon	Expon.	Uniform	Expon	Levy	Expon	Expon	Expon	Levy
#9	Levy	Levy	Expon	lew	-	Levy	Levy	levy	Beta General
#10	BetaGeneral	Beta General	Levy	-	-	-	-	-	-

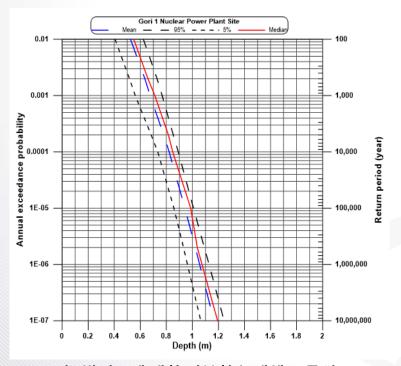
<2발전소 통계모형 검증 결과>

PFHA(Probability Flood Hazard Assessment)

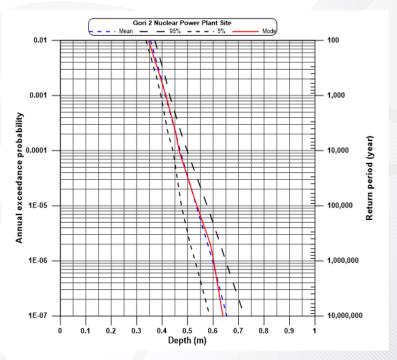
□ 검증된 통계모형을 각 발전소별로 재현기간별-지속시간에 따른 분포형을 Monte Carlo Simulation을 통해 Iterations 10000의 확률론적 분석을 실시함

PFHA(Probability Flood Hazard Assessment)

□ 분석을 통하여 각 재현기간별 하나의 값인 Mena, 표준편차(Std.), 신뢰구간 95%, 신뢰구간 5%, 최빈도값(Mode)를 다음 표와 같이 산정함.


<재현기간별-지속시간에 따른 확률분포형 적용 결과(1발전소)>

	Mean(m)	Std.	95%(m)	5%(m)	Mode(m)
100y	0.527	0.068	0.625581	0.40501	0.549
500y	0.637	0.066	0.730573	0.515322	0.658
5000y	0.678	0.065	0.769855	0.559988	0.711
1000y	0.782	0.053	0.854978	0.682265	0.815
10000y	0.824	0.050	0.89342	0.732832	0.848
100000y	0.945	0.048	1.010168	0.856509	0.986
500000y	1.025	0.051	1.093229	0.930352	1.037
10-6y	1.058	0.053	1.129839	0.960392	1.073
10-7y	1.168	0.056	1.244944	1.062573	1.193


<재현기간별-지속시간에 따른 확률분포형 적용 결과(2발전소)>

	Mean(m)	Std.	95%(m)	5%(m)	Mode(m)
100y	0.354	0.010	0.370899	0.336974	0.357
500y	0.397	0.010	0.414351	0.381084	0.400
5000y	0.412	0.010	0.429155	0.395829	0.415
1000y	0.454	0.016	0.475312	0.42372	0.460
10000y	0.470	0.016	0.497068	0.443375	0.466
100000y	0.533	0.031	0.576798	0.475928	0.548
500000y	0.578	0.037	0.628961	0.508896	0.597
10-6y	0.598	0.037	0.648584	0.529037	0.610
10-7y	0.653	0.041	0.721423	0.586422	0.652

- □ 산정된 최빈도값을 바탕으로 고리1발전소와 고리2발전소의 재해도 곡선을 산정함
- □ 외부침수사건이 발생 시 원전부지의 침수 위험성에 대한 지표를 제시하고 의사결정의 최적의 방안은 제시함

<고리 1발전소에 대한 외부침수 재해도 곡선>

<고리 2발전소에 대한 외부침수 재해도 곡선>

결론

- □ 본 연구에서는 국가주요시설물에서 외부침수사건으로부터 발생할 수 있는 홍수에 대한 확률론적 홍수해석에 의한 재해도 평가(PFHA) 기법을 제시함
 - ① 극한 강우사상에서 국가 주요시설물의 홍수해석을 위해 HEC-HMS, FLO2D, ArcGIS등을 통해 데이터베이스를 구축함. 실제 2014년 8월 25일 원자력발전소 부지의 시간당 134 mm의 집중호우로 인한 발생한 침수심과 비교하였을 때 구축된 수치모형에 적용한 확률강우량 134.5 mm 시나리오와 유사한 결과를 나타남
 - ② 강우 유출 분석 결과 원자력발전소 부지에서 첨두유량은 1~2시간 사이가 가장 큰 것으로 나타남. 시나리오에 의한 2차원 외부침수사건에 대한 홍수해석결과 1발전소와 2발전소의 재현기간별 최대 침수심에 대한 지속시간 1~5 hr의 재해도 곡선을 산정하여 외부침수사건에 대한 지표값을 제시함

결론

- ③ 확률론적 홍수 위험도 평가(PFHA)를 통해 외부침수사건의 재해도 곡선에 대한 AIC검증을 통한 확률분포형을 적용 후 재현기간별 최빈도값을 산정함. 도출한 최빈도 값을 기준으로 고리 1발전소와 2발전소 대표적인 확률론적 재해도 곡선을 산정하여 외부 침수 사건에 대한 지표값을 제시함.
- □ 본 연구를 통해서 향후 SSC (Structures, Systems and Components)의 홍수 취약성 곡선과 확률 론적 홍수 재해도 곡선을 연계하여 확률론적 홍수 위험 분석(PFRA)이 가능할 것으로 판단됨.
- □ 또한 원자력 발전소 홍수 방지 기능 및 절차의 신뢰성을 정량화하는데에 대한 의사결정의 지표 자료를 제시할 수 있을 것으로 판단됨.

Thank you for listening to my presentation