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1. Introduction  

When programming a machine learning application, a 

large amount of input data can collected. It might be 

needed to segregate the data into several dimensions of 

data. While the data is being collected and segregated, 

some of the data might be unnecessarily collected or the 

data dimensions be unnecessarily segregated. In this case, 

we need to eliminate the unnecessary data or reduce the 

dimensions of the data. This paper deals with the reduction 

of data dimensions. 

The machine learning programming for simple and 

multiple linear regressions were briefly reviewed in 

previous papers [1] and [2]. The machine learning method 

and the algebra method for the linear regressions were also 

compared in previous paper [3]. 

When we want to apply machine learning to nuclear 

facilities, we collect much data from field instruments, 

such as temperature, level, pressure, flow, etc. While the 

domain of a nuclear facility is analyzed, some of the field 

data are not needed for the machine learning. In this case, 

we want to determine how much data impacts the results of 

machine learning. If some of the data has a low impact, we 

can eliminate the data from the original data. This 

elimination will increase the computing time of the 

machine learning. In programming the linear regressions 

using the machine learning and/or algebra method, the 

reduction of data dimensions produces many benefits in 

computing time. 

This paper introduces the principal component analysis 

(PCA) as a method to reduce the data dimensions and 

presents the test results of the PCA with three dimensional 

simple and arbitral sample data. 

 

2. Principal Component Analysis 

Data projection is one of ways to reduce data 

dimensions by orthogonally moving data in higher 

dimensional data space to lower dimensional data space 

[4]. The lower or higher dimensional data space then its 

original data space is called a hyper plane [5]. 

When we suppose that the data vector 𝒙 is projected 

onto a unit vector 𝒘, the projected data is represented in 

the form of 𝒙𝑻𝒘, which is a scalar value. The projected 

data 𝒙𝑻𝒘 lies on the 𝒘 so it can be represented in the 

vector form of (𝒙𝑻𝒘)𝒘. When n numbers of 𝒙 data are 

projected onto the 𝒘, the mean of all projected data is 

represented in the form of 
1

𝑛
∑ 𝒙𝑖

𝑇𝑛
𝑖=1 𝒘. In this paper, we 

assume that all the  𝒙  data are normalized so that the 

mean of them becomes zero. Thus, 
1

𝑛
∑ 𝒙𝑖

𝑇𝑛
𝑖=1 𝒘 is also 

zero because
1

𝑛
∑ 𝒙𝑖

𝑇𝑛
𝑖=1  is zero. This makes many of our 

equations simple. The normalization of data enables the 

machining learning program to run fast and produce 

accurate outcomes. 

When the data 𝒙 is projected onto a hyperplane 𝒘, we 

need to find the optimized vector to minimize the 

distance between the 𝒙  and 𝒘  and maximize the 

variance of the projected data 𝒙𝑻𝒘. 

The distance between the 𝒙  and (𝒙𝑻𝒘)𝒘  can be 

represented in the square of the L2-norm form of 

‖[𝒙 − (𝒙𝑻𝒘)𝒘]‖2. An optimal 𝒘 can be obtained using 

the mean square error (MSE) called a least square fit for 

all 𝒙  vectors projected onto the 𝒘 . The MSE with 

respect to 𝒘 is represented in the form of  

MSE(𝒘) =
1

𝑛
∑[𝒙𝑖 − (𝒙𝑖

𝑇𝒘)𝒘]2

𝑛

𝑖=1

                                   

=
1

𝑛
∑[𝒙𝑖

𝑇𝒙𝑖 − 𝟐𝒙𝑖
𝑇(𝒙𝑖

𝑇𝒘)𝒘 + (𝒙𝑖
𝑇𝒘)𝒘𝑻(𝒙𝑖

𝑇𝒘)𝒘]

𝑛

𝑖=1

   

=
1

𝑛
∑[𝒙𝑖

𝑇𝒙𝑖 − (𝒙𝑖
𝑇𝒘)𝟐]

𝑛

𝑖=1

                                                     

=
1

𝑛
∑ 𝒙𝑖

𝑇𝒙𝑖 −
1

𝑛
∑(𝒙𝑖

𝑇𝒘)𝟐

𝑛

𝑖=1

𝑛

𝑖=1

.                                      (1) 

 

From the Eq. (1), we know that the  MSE(𝒘)  is 

minimized when the 
1

𝑛
∑ (𝒙𝑖

𝑇𝒘)𝟐𝑛
𝑖=1   is maximized 

because the 
1

𝑛
∑ 𝒙𝑖

𝑇𝒙𝑖
𝑛
𝑖=1  is not related to 𝒘. 

We represent the variance of projected data 𝒙𝑻𝒘  in 

the form of 

Var(𝒙𝑻𝒘) =
1

𝑛
∑(𝒙𝑖

𝑇𝒘)2

𝑛

𝑖=1

− (
1

𝑛
∑ 𝒙𝑖

𝑇𝒘

𝑛

𝑖=1

)

2

.             (2) 

 

In Eq. (2), the square of mean of 𝒙𝑻𝒘, (
1

𝑛
∑ 𝒙𝑖

𝑇𝒘𝑛
𝑖=1 )2, 

is zero because we already assumed all the 𝒙 data were 

normalized in this paper. Thus, the variance is 

represented in the simple form of 

Var(𝒙𝑻𝒘) =
1

𝑛
∑(𝒙𝑖

𝑇𝒘)2

𝑛

𝑖=1

.                                            (3) 

 

In Eq. (3), when the 
1

𝑛
∑ (𝒙𝑖

𝑇𝒘)2𝑛
𝑖=1   is maximized, 

the Var(𝒙𝑻𝒘)  is also maximized. Thus, we know that 

the  MSE(𝒘)  is minimized when the Var(𝒙𝑻𝒘)  is 
maximized. We need to find a way to maximize 

the Var(𝒙𝑻𝒘). In order to eliminate the Σ in Eq. (3) and 
make the equation a simple form, we expand the data 
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vector 𝒙 to an n-by-m or n-by-n matrix 𝑿. In this case, 
the 𝒘  will be n number of vectors. When the 𝑿  is 
projected onto the  𝒘 , the variance of  𝑿𝒘  is 
represented in the form of  

Var(𝑿𝒘) =
1

𝑛
(𝑿𝒘)𝑻(𝑿𝒘)  =

1

𝑛
𝒘𝑻𝑿𝑻𝑿𝒘                        

= 𝒘𝑻
𝑿𝑻𝑿

𝑛
𝒘 = 𝒘𝑻𝑽𝒘,                                                  (4) 

where 𝑽 is 
𝑿𝑻𝑿

𝑛
. 

 

In Eq. (4), the 𝑽 is a matrix that represents a variance 

of 𝑿. When the matrix 𝑿 is given, we want to find an 

optimal (i.e., stationary) 𝒘  to maximize the Var(𝑿𝒘). 
Thus, the function of maximizing the Var(𝑿𝒘)  is 

defined as an objective function. Along with the 

objective function, when 𝒘 is a unit vector, we define an 

constraint function  

g(𝒘) = 𝒘𝑻𝒘 − 1                                                              (5) 

 

With Eqs. (4) and (5), we can adopt the Lagrange 

multiplier λ to find an optimal  𝒘  so as to define a 

Lagrangian function with respect to 𝒘  and λ 

ℒ(𝒘, λ ) =  Var(𝑿𝒘) − λg(𝒘)                                             

=  𝒘𝑻𝑽𝒘 − λ(𝒘𝑻𝒘 − 1)                                                (6) 

 

In order to solve the Lagrangian function, we take 

partial derivatives 
𝜕ℒ

𝜕𝒘
= 2𝑽𝒘 − 2λ𝒘                                                          (7) 

𝜕ℒ

𝜕λ
= 𝒘𝑻𝒘 − 1                                                                (8) 

 

Thus, we obtain an optimal 𝒘 value at zero from Eq. 

(7) 

𝑽𝒘 = λ𝒘                                                                  (9) 

 

In Eq. (9), the 𝒘 is an eigenvector of matrix 𝑽 and the 

λ  is an eigenvalue of eigenvector 𝒘 . The linear 

transformation of 𝒘  depends on the 𝑽 .  The maximal 

variance of 𝒘  is in λ . Thus, the λ  is also the diagonal 

value of the 𝑽 . The λ  is obtained by the eigenvalue 

decomposition for n-by-n matrix or singular value 

decomposition for n-by-m matrix of 𝑽 . The largest λ 

represents the largest variance of projected data. 

 

3. Sample Test Cases 

Sample test cases to reduce the data dimensions are 

arbitrarily chosen in this paper as shown in Table 1. 

 

Table 1: Sample data and normalized data 

Given data 

𝒙1 1 3 5 8 10 

𝒙2 1 12 33 54 75 

𝒙3 1 1 33 33 99 

y 1 2 3 4 5 

Normalized data of the given 𝒙1, 𝒙2 and 𝒙3 

𝒙1 -0.49 -0.27 -0.04 0.29 0.51 

𝒙2 -0.33 -0.33 -0.01 -0.01 0.67 

𝒙3 0.46 -0.31 -0.03 0.26 0.54 

 

Using the Sckit-learn PCA library, we can obtain 

projected sample data of 𝒙1, 𝒙2 and 𝒙3 and eigenvalues 

of λ as shown in Table 2. In Table 2, the 𝒙1 is the most 

dominant characteristic sample data because its 

eignevalue is the largest which represents the largest 

variance. 

 

Table 2: Results of PCA 

Projected sample data after PCA 

𝒙1 -0.74 -0.52 -0.04 0.32 0.99 

𝒙2 -0.11 0.04 -0.02 0.22 -0.13 

𝒙3 -0.01 0.02 -0.01 -0.01 0.01 

λ 1.38 0.29 0.03  

 

When we perform the linear regression with the 

normalized data in Table 1, we obtain the values of 𝒘 

(i.e., coefficient of 𝒙1, 𝒙2 and 𝒙3) and the bias (i.e., y-

intercept) for the regression linear line, and predicted y 

values and R-squared value as shown in Table 3. 

 

Table 3: Linear regression with the normalized data 

in Table 1 

𝒘 4.89 0.43 -1.38  

bias 3 

Predicted y 1.10 1.98 2.82 4.06 5.04 

R2 0.995 

 

When we perform the linear regression with the 

projected data in Table 2, we obtain the 𝒘 and the bias 

for each data dimensions, and predicted y values and R-

squared value as shown in Table 4. 

 

Table 4: Linear regression with the projected data in 

Table 2 

Case 1: Linear regression with 𝒙1, 𝒙2 and 𝒙3  

(i.e., Data dimensions are 3.) 

𝒘 2.26 1.68 4.25  

bias 3 

Predicted y 1.10 1.98 2.82 4.06 5.04 

R2 0.995 

Case 2: Linear regression with 𝒙1 and 𝒙2  

(i.e., Data dimensions are 2.) 

𝒘 2.26 1.68  

bias 3 

Predicted y 1.14 1.89 2.86 4.09 5.02 

R2 0.994 

Case 3: Linear regression with 𝒙1 

(i.e., Data dimension is 1.) 

𝒘 2.26 

bias 3 

Predicted y 1.33 1.82 2.90 3.71 5.24 

R2 0.971 
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In Table 4, Case 1 does not reduce the dimensions but 

Case 2 and 3 do. Case 1 generates the same results as 

the linear regression with the normalized sample data 

because the data dimensions are not reduced. Case 2 

dose not significantly degrade the characteristic of the 

original data but Case 3 degrades it a little bit. If we 

allow the threshold of R-squared value is 9.5, Case 3 is 

also effective. We need to study or establish a formal 

method to measure how much the data dimensions can 

be reduced while still maintaining the characteristic of 

the original data. The programming is done using 

Spyder 3.3.6 in Anaconda 3 1.9.12, Python 3.7.4, and 

Sckit-learn library. 
 

4. Conclusions  

This paper introduced the principal component 

analysis (PCA), which we used to reduce data 

dimensionality, and presented test results of the 

reduction of data dimensions using the PCA method. 

The PCA method showed an effective method for the 

reduction. There is a further need to establish a formal 

method to determine the level of reduction. 

A further study will explore the application of 

singular value decomposition. 
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