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The boundary conditions:

 The first derivation of the 𝑆𝑃3 equations was for an infinite homogeneous medium with isotropic distributed sources 

for which 𝑆𝑃3 and 𝑃3 are equivalent.

 However when applying the 𝑆𝑃3 equations to finite problems users have traditionally applied 1D boundary conditions 

to the problem subdomains.

 Since the physical meaning of the theory is unknown, is it appropriate to employ these boundary conditions?

The 𝑆𝑃3 unanswered questions

The physical meaning of the 𝑆𝑃3 equations:

 When Gelbard first proposed the theory he formulated it for the convenience of having even scalar fluxes (𝜙0, 𝜙2).

 The use of 𝑆𝑃3 became popular due to its general improvement of diffusion results and its implementation simplicity. 

 However, there is not a real understanding of what these equations mean.

 It is clear that for n=2 𝜙2 should be a tensor of 5 components and not a scalar.

 Then, what are the 𝑆𝑃3 equations actually representing?

Dr. Chao’s work:

 Dr. Chao carried out a work to answer these questions that resulted in the formulation of the Generalized 𝑆𝑃3
equations.
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The physical meaning

To solve the first question the Davison’s 𝑃3 equations formulation is employed.

 This formulation uses solid harmonics instead of the traditional “surface” harmonics.

 The 𝑃3 equations have the following form:
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From the 𝑆𝑃3 equations:
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Conclusion:

 The 𝑆𝑃3 equations are a reformulation of the 0th order 𝑃3 equation.

 With the solution of 𝜙0 the other flux components (Ψ1, Ψ2 and Ψ3) can be obtained.

 This “only” a particular solution of the angular flux. 
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The boundary conditions

Consequences of the physical meaning for the boundary conditions:

 Since the solution of the 𝑆𝑃3 equations is the particular angular flux, the condition to be fulfilled at the boundary of the subdomain is 

precisely the continuity of this particular angular flux.

 This is the condition even if only the value of 𝜙0 is desired.

But what is the form of these conditions:

 Employing the Davison’s formulation to obtain the new boundary conditions is cumbersome.

 As an alternative Chao proposes the use of the variational derivation of the 𝑆𝑃3 equations to define the new set of conditions.

The new boundary conditions:

 The derivation is somehow lengthy therefore we will skip it here.

 The final form of the conditions are:
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 If 𝐺𝜙 and 𝐺𝐽 are set 0 the equations are equivalent to the

traditional BC.

 If they are ‘switch on’, then 𝜙2 is not continuous anymore.

 In this case the ‘corrected’ 𝜙2 is the continuous one.
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A 2D numerical solution

To prove the validity and potential of the new boundary conditions a 2D nodal solution is proposed.

 More specifically, the 2D Source Expansion Nodal Method is employed.

 To begin with the 𝑆𝑃3 equations need to be decoupled (i.e. similarity transformation) resulting in two non-homogeneous Helmholtz 

equations.
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 The flux solution consists of a homogeneous and a particular component.

 The particular part is expanded in Legendre Polynomials whose coefficients are obtained from the right hand side (the source here) 

which is also expanded in Legendre Polynomials.
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 The homogeneous solution is expanded as a sum of hyperbolic functions.

 In order to incorporate the transverse terms of the boundary conditions the following 8 coefficients form with cross terms is selected:
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A 2D numerical solution
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 To obtain the homogeneous flux coefficients the four surface averaged incoming currents are imposed.

 Additionally, four surface averaged projected incoming currents are used.

 Where the surface averaged projected fluxes and currents are defined as:

 And the projection function is the following step function:

 To obtain the homogeneous part of the incoming currents the particular part needs to be subtracted from the total current:

 To update the source coefficients the total flux must be expressed in the same shape as the source:
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Isolation of the transport error

With the introduction of the new boundary conditions a reduction of the transport error is expected.:

 The evaluation of the transport error requires the elimination of the other sources of error.

 The energy collapse and the geometry homogenization errors are removed by employing the same set of group constants for the 

comparison.

 For the elimination of the discretization error a sensitivity analysis is carried out to set the minimum mesh per pin that eliminates this error.

 The reference is set with an MOC calculation with pin homogenized 8 groups group constants obtained with NTRACER with a 32x32 mesh 

per pin.

The transverse term in the boundary condition 𝐽2 causes divergence in the calculation.

 The cause of this instability probably arises from the linearity of the cross terms in the homogeneous flux expansion (𝑦𝑐𝑜𝑠ℎ(𝑘𝑥)).

 For now we will set 𝐺𝐽 equal to 0.

 The discretization error will be assessed employing here the assembly 5 of the VERA benchmark (enrichment 2.6 % and 24 burnable 

absorbers)
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Analysis of the 𝐺𝐽 term

The isolation of the transport error is achieved with a mesh size of at least 4x4 subdivision per pin.

 However, although the new boundary conditions (𝐺𝑆𝑃3(0)) reduce the error, this reduction is very modest.

 Therefore, we decided to explore the impact of the 𝐺𝐽 term.

𝐺𝐽 effectively reduces way further the transport error.

 This being said, the nodal solution proposed only allows a 𝐺𝐽 value of 0.5.

 It seems clear that the introduction of the complete boundary conditions should be achieved 

if a notable improvement of the results is desired.
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Single Assembly calculations

To generalize this conclusion the rest of the assemblies of the benchmark are calculated.

 The value of 𝐺𝐽 is et to 0.5 for all the calculations.

 The mesh size is set to 4x4.

 The new boundary conditions are more effective as the heterogeneity of the problem increases.

Assembly
Enrichment

(%)

#Burnable

absorbers

1 2.1 0

2 2.6 0

3 2.6 16

4 2.6 20

5 2.6 24

6 3.1 0

7 3.1 8

8 3.1 16

9 3.1 20

10 3.1 24
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Checkerboard calculation

To test the equations with a more challenging problem a checkerboard problem is calculated.

 The assemblies 5 and 6 are selected to introduce a big inter-assembly gradient.

 The mesh size is set to 4x4.

 In this case although the reactivity error is again reduced the pin power error worsens.

Assembly
Enrichment

(%)

#Burnable

absorbers

1 2.1 0

2 2.6 0

3 2.6 16

4 2.6 20

5 2.6 24

6 3.1 0

7 3.1 8

8 3.1 16

9 3.1 20

10 3.1 24

5

5

6

6

VERA

4x4

5-6

drho -182.57

max 0.10%

min -0.23%

RMS 0.08%

drho -110.31

max 0.35%

min -0.39%

RMS 0.16%

Core

Discretization

Assemblies

SP3

GSP3

-0 -0 -0 -0 -0 0 0 0 0 0 0 0

-0 0 -0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0

-0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0

-0 -0 -0 -0 -0 0 0 0 -0 0 0 0

-0 -0 -0 -0 -0 -0 -0 -0 0 0 0 -0 -0 0 0 0 0 0

-0 -0 -0 -0 -0 -0 -0 0 0 0 0 -0 -0 0 0 0

-0 -0 -0 -0 -0 0 0 0 0 0 0 -0 0 0

-0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -0 -0 -0 -0 -0 -0

0 0 -0 0 0 0 0 0 0 -0 -0 -0 -0 -0

0 0 0 -0 -0 0 0 0 0 -0 -0 -0 -0 -0 -0 -0

0 0 0 0 0 -0 -0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0

0 0 0 -0 0 0 0 -0 -0 -0 -0 -0

0 0 0 0 0 0 0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0

0 0 0 0 0 0 0 0 0 0 -0 -0 -0 -0 -0 -0 0 -0

0 0 0 0 0 0 0 -0 -0 -0 -0 -0

0 0 0 0 0 0 -0 -0 -0 -0 -0 -0

0 0 -0 0 -0 -0 0 -0 -0 0 0 -0 0 0 -0 0 0 -0

0 -0 -0 0 -0 -0 0 -0 -0 0 0 -0 0 0 -0 0 0 -0

0 0 0 0 0 0 0 -0 -0 -0 -0 -0

0 -0 -0 0 -0 -0 -0 -0 -0 0 0 -0 -0 0 -0 0 0 -0

0 -0 -0 0 -0 0 0 -0 0 -0 -0 -0 -0 0 0 -0

0 0 -0 0 -0 -0 -0 0 0 0 -0 -0 -0 -0

0 -0 -0 0 -0 0 -0 -0 -0 0 0 0 -0 0 -0 0 0 -0

0 -0 -0 0 -0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 -0

-0 0 0 0 0 0 0 0 0 -0 -0 -0 -0 -0 0 -0 -0 0

-0 0 0 -0 0 -0 0 0 0 -0 -0 -0 0 -0 0 -0 -0 0

-0 -0 -0 -0 0 0 0 -0 -0 -0 0 -0 0 0

-0 0 0 -0 -0 -0 -0 0 -0 0 0 -0 0 -0 -0 0

-0 0 0 -0 0 -0 -0 0 0 -0 -0 -0 -0 -0 0 -0 -0 0

-0 -0 -0 -0 -0 0 0 0 0 0 0 0

-0 0 0 -0 0 0 -0 0 0 -0 -0 0 -0 -0 0 -0 -0 0

-0 0 0 -0 0 0 -0 0 0 -0 -0 0 -0 -0 0 -0 0 0

-0 -0 -0 -0 -0 -0 0 0 0 0 0 0



SNURPL11

Core calculations

The analysis is now extended to whole core calculations.

 The core problems employed are the VERA benchmark problems.

 The first corresponds to an ARO problem.

 The second one has the CR bank D inserted (P5).

 The mesh refinement is 2x2 per pin. SP3

GSP3

ARO

Discretization 2x2

Control rods ARO P5

SP3

∆ρ (pcm) -170.27 -198.24

Max. (%) 1.26 3.69

Min (%) -1.41 -3.96

RMS (%) 0.48 0.93

GSP3

∆ρ (pcm) -134.03 -158.15

Max. (%) 0.52 0.95

Min (%) -1.27 -2.96

RMS (%) 0.40 0.42
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Core calculations

The analysis is now extended to whole core calculations.

 The core problems employed are the VERA benchmark problems.

 The first corresponds to an ARO problem.

 The second one has the CR bank D inserted (P5).

 The mesh refinement is 2x2 per pin.

Discretization 2x2

Control rods ARO P5

SP3

∆ρ (pcm) -170.27 -198.24

Max. (%) 1.26 3.69

Min (%) -1.41 -3.96

RMS (%) 0.48 0.93

GSP3

∆ρ (pcm) -134.03 -158.15

Max. (%) 0.52 0.95

Min (%) -1.27 -2.96

RMS (%) 0.40 0.42

SP3

GSP3

P5
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Conclusions

A first numerical solution is achieved with the application of 2D SENM.

 However this solution is “incomplete”.

 The rigorous boundary condition for the second moment current is only satisfied for a maximum 𝐺𝐽=0.5.

The Generalized 𝑆𝑃3 equations reduce effectively the transport error.

 This reduction, nonetheless, is only notable if 𝐺𝐽 is set equal 0.5.

 Consequently we can conclude that a complete solution of the 𝐺𝑆𝑃3 should be obtained.

In this regard, other numerical solutions have been attempted.

 For example 2D SENM with 45º homogenous flux expansion with current continuity or FDM discretization.

 This being said, the search for better solutions is still ongoing.


