The Generalized *SP*₃ equations: Study of numerical solutions

Jorge González Amorós and Han Gyu Joo KNS Autumn meeting-December 2020

KEYWORDS: SP3, Boundary Conditions, $GSP_3^{(0)}$, 2D SENM, Transport error

\Box The physical meaning of the *SP*₃ equations:

- When Gelbard first proposed the theory he formulated it for the convenience of having even scalar fluxes (ϕ_0 , ϕ_2).
- The use of SP_3 became popular due to its general improvement of diffusion results and its implementation simplicity.
- However, there is not a real understanding of what these equations mean.
- It is clear that for n=2 ϕ_2 should be a tensor of 5 components and not a scalar.
- Then, what are the SP3 equations actually representing?

□ The boundary conditions:

- The first derivation of the SP_3 equations was for an infinite homogeneous medium with isotropic distributed sources for which SP_3 and P_3 are equivalent.
- However when applying the *SP*₃ equations to finite problems users have traditionally applied 1D boundary conditions to the problem subdomains.
- Since the physical meaning of the theory is unknown, *is it appropriate to employ these boundary conditions*?

Dr. Chao's work:

• Dr. Chao carried out a work to answer these questions that resulted in the formulation of the Generalized SP₃ equations.

- \Box To solve the first question the Davison's P_3 equations formulation is employed.
 - This formulation uses solid harmonics instead of the traditional "surface" harmonics.
 - The *P*₃ equations have the following form:

$$\begin{split} \Psi_{3} \ \mathbf{U}, r &= -\frac{5}{7\Sigma_{t}} \mathbf{U} \cdot \nabla \Psi_{2} \ \mathbf{U}, r - \frac{3}{7} U^{2} \Psi_{1} \ \mathbf{U}, r - \frac{1}{7\Sigma_{t}} U^{2} \mathbf{U} \cdot \nabla \phi_{0} \\ & \left[1 - \frac{1}{7\Sigma_{t}^{2}} \nabla^{2} \right] \Psi_{2} \ \mathbf{U}, r = -\frac{6}{7\Sigma_{t}} \mathbf{U} \cdot \nabla \Psi_{1} \ \mathbf{U}, r - \frac{1}{7} \left[\frac{3}{5\Sigma_{t}^{2}} \ \mathbf{U}, r^{2} - \frac{1}{5\Sigma_{t}^{2}} U^{2} \nabla^{2} + 2U^{2} \right] \phi_{0} \ r + \frac{2}{7\Sigma_{t}} U^{2} Q \ r \\ & \left[1 - \frac{3}{7\Sigma_{t}^{2}} \nabla^{2} \right] \Psi_{1} \ \mathbf{U}, r = \frac{3}{7\Sigma_{t}} \mathbf{U} \cdot \nabla \left[\frac{1}{5\Sigma_{t}^{2}} \nabla^{2} - 1 \right] \phi_{0} \ r + \frac{2}{21\Sigma_{t}^{2}} \mathbf{U} \cdot \nabla Q \ r \\ & \left[\frac{9}{\Sigma_{t}^{4}} \nabla^{4} - \frac{90}{\Sigma_{t}^{2}} \nabla^{2} + 105 \right] \phi_{0} \ r = 5 \left[21 - \frac{11}{\Sigma_{t}^{2}} \nabla^{2} \right] \frac{Q \ r}{\Sigma_{t}} \end{split}$$

\Box From the *SP*³ equations:

□ Conclusion:

- The SP_3 equations are a reformulation of the 0th order P_3 equation.
- With the solution of ϕ_0 the other flux components (Ψ_1 , Ψ_2 and Ψ_3) can be obtained.
- This "only" a particular solution of the angular flux.

□ Consequences of the physical meaning for the boundary conditions:

- Since the solution of the *SP*₃ equations is the particular angular flux, the condition to be fulfilled at the boundary of the subdomain is precisely the continuity of this particular angular flux.
- This is the condition even if only the value of ϕ_0 is desired.

□ But what is the form of these conditions:

- Employing the Davison's formulation to obtain the new boundary conditions is cumbersome.
- As an alternative Chao proposes the use of the variational derivation of the SP₃ equations to define the new set of conditions.

٦

□ The new boundary conditions:

- The derivation is somehow lengthy therefore we will skip it here.
- The final form of the conditions are:

$$\Phi_{0}(r) = \frac{1}{4}\phi_{0} + \frac{5}{16} \left[\phi_{2} - G_{\phi} \frac{3}{2} \frac{\partial^{2}}{\partial y^{2}} \left(\frac{2}{15\Sigma_{t}^{2}} \phi_{0} + \frac{11}{21\Sigma_{t}^{2}} \phi_{2} \right) \right]$$

$$\Phi_{2}(r) = \frac{1}{16}\phi_{0} + \frac{5}{16} \left[\phi_{2} - G_{\phi} \frac{3}{2} \frac{\partial^{2}}{\partial y^{2}} \left(\frac{2}{15\Sigma_{t}^{2}} \phi_{0} + \frac{11}{21\Sigma_{t}^{2}} \phi_{2} \right) \right]$$

$$J_{0}(r) = -\frac{1}{3\Sigma_{t}} \frac{\partial}{\partial x} \phi_{0} - \frac{2}{3\Sigma_{t}} \frac{\partial}{\partial x} \phi_{2}$$

$$J_{2}(r) = -\frac{2}{15\Sigma_{t}} \frac{\partial}{\partial x} \phi_{0} - \frac{4}{15\Sigma_{t}} \frac{\partial}{\partial x} \phi_{2} - \frac{9}{35\Sigma_{t}} \left[\frac{\partial}{\partial x} \phi_{2} - G_{J} \frac{5}{2} \frac{\partial}{\partial x} \frac{\partial^{2}}{\partial y^{2}} \left(\frac{2}{15\Sigma_{t}^{2}} \phi_{0} + \frac{11}{21\Sigma_{t}^{2}} \phi_{2} \right) \right]$$

- If G_{ϕ} and G_J are set 0 the equations are equivalent to the traditional BC.
- If they are 'switch on', then ϕ_2 is not continuous anymore.
- In this case the 'corrected' ϕ_2 is the continuous one.

□ To prove the validity and potential of the new boundary conditions a 2D nodal solution is proposed.

- More specifically, the 2D Source Expansion Nodal Method is employed.
- To begin with the *SP*₃ equations need to be decoupled (i.e. similarity transformation) resulting in two non-homogeneous Helmholtz equations.

$$\nabla^2 \tilde{\phi} - k^2 \tilde{\phi} = \tilde{Q}$$

• The flux solution consists of a homogeneous and a particular component.

$$\tilde{\phi} x, y = \tilde{\phi}_h x, y + \tilde{\phi}_p x, y$$

• The particular part is expanded in Legendre Polynomials whose coefficients are obtained from the right hand side (the source here) which is also expanded in Legendre Polynomials.

$$\tilde{\phi}_{p} \ x, y = \sum_{\substack{i=0\\i+j}}^{2} \sum_{j=0}^{2} p_{i,j} P_{i} \left(\frac{2x}{h_{x}} \right) P_{j} \left(\frac{2y}{h_{y}} \right) \longrightarrow \tilde{Q} \ x, y = \sum_{\substack{i=0\\i+j}}^{2} \sum_{j=0}^{2} q_{i,j} P_{i} \left(\frac{2x}{h_{x}} \right) P_{j} \left(\frac{2y}{h_{y}} \right)$$

- The homogeneous solution is expanded as a sum of hyperbolic functions.
- In order to incorporate the transverse terms of the boundary conditions the following 8 coefficients form with cross terms is selected:

$$\tilde{\phi}_h = a_1 \sinh(kx) + a_2 \cosh(kx) + a_3 \sinh(ky) + a_4 \cosh(ky) + a_5 y \sinh(kx) + a_6 y \cosh(kx) + a_7 x \sinh(ky) + a_8 x \cosh(ky)$$

- To obtain the homogeneous flux coefficients the four surface averaged incoming currents are imposed.
- Additionally, four surface averaged projected incoming currents are used.
- Where the surface averaged projected fluxes and currents are defined as:

$$\hat{\phi}_{x^{+}} = \frac{1}{h_{y}} \int_{-\frac{h_{y}}{2}}^{\frac{h_{y}}{2}} w(y)\phi(\frac{h_{x}}{2}, y)dy \qquad \hat{J}_{x^{+}} = -\frac{D_{0}}{h_{y}} \int_{-\frac{h_{y}}{2}}^{\frac{h_{y}}{2}} w(y)\frac{\partial}{\partial x}\phi(\frac{h_{x}}{2}, y)dy$$

• And the projection function is the following step function:

$$w(y) = \begin{cases} -1 \text{ for } y < 0 \\ 1 \text{ for } y \ge 0 \end{cases}$$

• To obtain the homogeneous part of the incoming currents the particular part needs to be subtracted from the total current:

$$J_{h}^{-} = J^{-} - J_{p}^{-}$$
 $\hat{J}_{h}^{-} = \hat{J}^{-} - \hat{J}_{p}^{-}$

• To update the source coefficients the total flux must be expressed in the same shape as the source:

$$c_{i,j} = \frac{\int_{-1}^{1} \int_{-1}^{1} (\tilde{\phi}_{h} + \tilde{\phi}_{p}) P_{i}\left(\frac{2x}{h_{x}}\right) P_{j}\left(\frac{2y}{h_{y}}\right) dxdy}{\int_{-1}^{1} \int_{-1}^{1} P_{i}^{2}\left(\frac{2x}{h_{x}}\right) P_{j}^{2}\left(\frac{2y}{h_{y}}\right) dxdy} \longrightarrow \tilde{\phi} \quad x, y = \sum_{\substack{i=0\\i+j}}^{2} \sum_{\substack{j=0\\i+j}}^{2} c_{i,j} P_{i}\left(\frac{2x}{h_{x}}\right) P_{j}\left(\frac{2y}{h_{y}}\right) dxdy$$

- □ With the introduction of the new boundary conditions a reduction of the transport error is expected.:
 - The evaluation of the transport error requires the elimination of the other sources of error.
 - The energy collapse and the geometry homogenization errors are removed by employing the same set of group constants for the comparison.
 - For the elimination of the discretization error a sensitivity analysis is carried out to set the minimum mesh per pin that eliminates this error.
 - The reference is set with an MOC calculation with pin homogenized 8 groups group constants obtained with NTRACER with a 32x32 mesh per pin.
- \Box The transverse term in the boundary condition J_2 causes divergence in the calculation.
 - The cause of this instability probably arises from the linearity of the cross terms in the homogeneous flux expansion (ycosh(kx)).
 - For now we will set G_I equal to 0.
 - The discretization error will be assessed employing here the assembly 5 of the VERA benchmark (enrichment 2.6 % and 24 burnable absorbers)

□ The isolation of the transport error is achieved with a mesh size of at least 4x4 subdivision per pin.

- However, although the new boundary conditions $(GSP_3(0))$ reduce the error, this reduction is very modest.
- Therefore, we decided to explore the impact of the G_I term.

\square *G_I* effectively reduces way further the transport error.

- This being said, the nodal solution proposed only allows a G_I value of 0.5.
- It seems clear that the introduction of the complete boundary conditions should be achieved if a notable improvement of the results is desired.

□ To generalize this conclusion the rest of the assemblies of the benchmark are calculated.

- The value of G_I is et to 0.5 for all the calculations.
- The mesh size is set to 4x4.
- The new boundary conditions are more effective as the heterogeneity of the problem increases.

Assembly	Enrichment (%)	#Burnable absorbers
1	2.1	0
2	2.6	0
3	2.6	16
4	2.6	20
5	2.6	24
6	3.1	0
7	3.1	8
8	3.1	16
9	3.1	20
10	3.1	24

□ To test the equations with a more challenging problem a checkerboard problem is calculated.

- The assemblies 5 and 6 are selected to introduce a big inter-assembly gradient.
- The mesh size is set to 4x4.
- In this case although the reactivity error is again reduced the pin power error worsens.

5	6
6	5

Core		VERA
Discret	ization	4x4
Assen	nblies	5-6
	drho	-182.57
502	max	0.10%
SP3	min	-0.23%
	RMS	0.08%
	drho	-110.31
GSP3	max	0.35%
	min	-0.39%
	RMS	0.16%

-0 -0 -0 -0 0 0 0 0 0 0 -0 0 -0 -0 -0 -0 0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0 -0 -0 0 -0 -0 -0 0 0 0 0 -0 -0 -0 -0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ο 0 0 0 0 0 0 0 0 0 0 -0 -0 -0 -0 -0 0 0 - 0 - 0 - 0 -0 -0 -0 0 0 -0 -0 -0 -0 -0 -0 -0 0 0 -0 -0 0 -0 0 0 0 -0 -0 -0 -0 -0 -0 -0 -0 0 -0 0 0 0 0 0 -0 -0 -0 -0 -0

0 0 -0 0 -0 -0 0 0 -0 0 0 -0 0 0 -0 0 0 -0

0 0 0 -0

0-0 0-0-0

0 0 -0 -0 -0 -0 -0 0 0 -0 -0 -0 -0 -0

-0 -0 0 -0 0

-0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0

0 0 0 0 0 0 0 0

0 -0 -0 0 -0 -0 -0 -0 0 -0 -0 0

-0 -0 -0 -0 0 0

0 -0 -0 -0 0

0 0

-0 0

0 0

-0 0 0 -0 -0

-0 -0

0-0 0 0-0

-0 -0

0-0 0 0-0

-0 0 -0 -0

-0 -0

-0 -0

Assembly	Enrichment (%)	#Burnable absorbers
1	2.1	0
2	2.6	0
3	2.6	16
4	2.6	20
5	2.6	24
6	3.1	0
7	3.1	8
8	3.1	16
9	3.1	20
10	3.1	24

Core calculations

□ The analysis is now extended to whole core calculations.

- The core problems employed are the VERA benchmark problems.
- The first corresponds to an ARO problem.
- The second one has the CR bank D inserted (P5).
- The mesh refinement is 2x2 per pin.

Discretization	cretization 2x2		<2
Control rods		ARO	P5
SP3	∆ρ (pcm)	-170.27	-198.24
	Max. (%)	1.26	3.69
	Min (%)	-1.41	-3.96
	RMS (%)	0.48	0.93
GSP3	∆ρ (pcm)	-134.03	-158.15
	Max. (%)	0.52	0.95
	Min (%)	-1.27	-2.96
	RMS (%)	0.40	0.42

Core calculations

□ The analysis is now extended to whole core calculations.

- The core problems employed are the VERA benchmark problems.
- The first corresponds to an ARO problem.
- The second one has the CR bank D inserted (P5).
- The mesh refinement is 2x2 per pin.

Discretization	Discretization		(2
Control rods		ARO	P5
SP3	∆ρ (pcm)	-170.27	-198.24
	Max. (%)	1.26	3.69
	Min (%)	-1.41	-3.96
	RMS (%)	0.48	0.93
GSP3	∆ρ (pcm)	-134.03	-158.15
	Max. (%)	0.52	0.95
	Min (%)	-1.27	-2.96
	RMS (%)	0.40	0.42

□ A first numerical solution is achieved with the application of 2D SENM.

- However this solution is "incomplete".
- The rigorous boundary condition for the second moment current is only satisfied for a maximum G_J =0.5.

\Box The Generalized *SP*₃ equations reduce effectively the transport error.

- This reduction, nonetheless, is only notable if G_J is set equal 0.5.
- Consequently we can conclude that a complete solution of the GSP_3 should be obtained.

□ In this regard, other numerical solutions have been attempted.

- For example 2D SENM with 45° homogenous flux expansion with current continuity or FDM discretization.
- This being said, the search for better solutions is still ongoing.

