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The SP; unanswered questions

O The physical meaning of the SP; equations:
* When Gelbard first proposed the theory he formulated it for the convenience of having even scalar fluxes (¢,, ¢,).
* The use of SP; became popular due to its general improvement of diffusion results and its implementation simplicity.
* However, there is not a real understanding of what these equations mean.
* |t is clear that for n=2 ¢, should be a tensor of 5 components and not a scalar.
* Then, what are the SP; equations actually representing?

O The boundary conditions:

* The first derivation of the SP; equations was for an infinite homogeneous medium with isotropic distributed sources
for which SP; and P; are equivalent.

* However when applying the SP; equations to finite problems users have traditionally applied 1D boundary conditions
to the problem subdomains.

* Since the physical meaning of the theory is unknown, is it appropriate to employ these boundary conditions?

O Dr. Chao’s work:

* Dr. Chao carried out a work to answer these questions that resulted in the formulation of the Generalized SP;
equations.
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The physical meaning

O To solve the first question the Davison’s P; equations formulation is employed.
* This formulation uses solid harmonics instead of the traditional “surface” harmonics.

* The P; equations have the following form:
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O Conclusion:
* The SP; equations are a reformulation of the 0t order P; equation.
* With the solution of ¢, the other flux components (¥;, ¥, and ¥;) can be obtained.
* This “only” a particular solution of the angular flux.
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The boundary conditions

O Consequences of the physical meaning for the boundary conditions:

* Since the solution of the SP; equations is the particular angular flux, the condition to be fulfilled at the boundary of the subdomain is
precisely the continuity of this particular angular flux.

* This is the condition even if only the value of ¢, is desired.

O But what is the form of these conditions:
* Employing the Davison’s formulation to obtain the new boundary conditions is cumbersome.
* As an alternative Chao proposes the use of the variational derivation of the SP; equations to define the new set of conditions.

0 The new boundary conditions:
* The derivation is somehow lengthy therefore we will skip it here.
* The final form of the conditions are:
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A 2D numerical solution

O To prove the validity and potential of the new boundary conditions a 2D nodal solution is proposed.
* More specifically, the 2D Source Expansion Nodal Method is employed.

* To begin with the SP; equations need to be decoupled (i.e. similarity transformation) resulting in two non-homogeneous Helmholtz
equations.

Vi —k9=Q

* The flux solution consists of a homogeneous and a particular component.

O XY =¢ XY +6, X,y

* The particular part is expanded in Legendre Polynomials whose coefficients are obtained from the right hand side (the source here)
which is also expanded in Legendre Polynomials.
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* The homogeneous solution is expanded as a sum of hyperbolic functions.
* In order to incorporate the transverse terms of the boundary conditions the following 8 coefficients form with cross terms is selected:
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¢, = &, sinh(kx) + a, cosh(kx) 4+ a, sinh(k y) + a, cosh(k y)
+ a; ysinh(kx) + a, y cosh(kx) + a, xsinh(k y) + a; x cosh(k y)
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A 2D numerical solution

* To obtain the homogeneous flux coefficients the four surface averaged incoming currents are imposed
* Additionally, four surface averaged projected incoming currents are used

* Where the surface averaged projected fluxes and currents are defined as
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* And the projection function is the following step function

—]1 fory<0
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* To obtain the homogeneous part of the incoming currents the particular part needs to be subtracted from the total current
Jy=J3"-J,
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Isolation of the transport error

O With the introduction of the new boundary conditions a reduction of the transport error is expected.:
* The evaluation of the transport error requires the elimination of the other sources of error.

* The energy collapse and the geometry homogenization errors are removed by employing the same set of group constants for the
comparison.

* For the elimination of the discretization error a sensitivity analysis is carried out to set the minimum mesh per pin that eliminates this error.

* The reference is set with an MOC calculation with pin homogenized 8 groups group constants obtained with NTRACER with a 32x32 mesh
per pin.

O The transverse term in the boundary condition J, causes divergence in the calculation.

* The cause of this instability probably arises from the linearity of the cross terms in the homogeneous flux expansion (ycosh(kx)).
* For now we will set G, equal to 0.

* The discretization error will be assessed employing here the assembly 5 of the VERA benchmark (enrichment 2.6 % and 24 burnable
absorbers)
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Analysis of the G; term

O The isolation of the transport error is achieved with a mesh size of at least 4x4 subdivision per pin.
* However, although the new boundary conditions (GSP;(0)) reduce the error, this reduction is very modest.
* Therefore, we decided to explore the impact of the G, term.

O G, effectively reduces way further the transport error.
* This being said, the nodal solution proposed only allows a G; value of 0.5. E
* |t seems clear that the introduction of the complete boundary conditions should be achieved
if a notable improvement of the results is desired.
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Single Assembly calculations

O To generalize this conclusion the rest of the assemblies of the benchmark are calculated.
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Checkerboard calculation
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* |n this case although the reactivity error is again reduced the pin power error worsens.

* The assemblies 5 and 6 are selected to introduce a big inter-assembly gradient.

* The mesh size is set to 4x4.

O To test the equations with a more challenging problem a checkerboard problem is calculated.
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Core calculations

O The analysis is now extended to whole core calculations.

* The core problems employed are the VERA benchmark problems.

* The first corresponds to an ARO problem.

* The second one has the CR bank D inserted (P5).
* The mesh refinement is 2x2 per pin.

Discretization 2x2
Control rods ARO P5
Ap (pcm) -170.27 -198.24
Max. (%) 1.26 3.69
SP3
Min (%) -1.41 -3.96
RMS (%) 0.48 0.93
Ap (pcm) -134.03 -158.15
Max. (%) 0.52 0.95
GSP3
Min (%) -1.27 -2.96
RMS (%) 0.40 0.42

SP3

GSP3

ARO
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Conclusions

O A first numerical solution is achieved with the application of 2D SENM.
* However this solution is “incomplete”.
* The rigorous boundary condition for the second moment current is only satisfied for a maximum G,=0.5.

O The Generalized SP; equations reduce effectively the transport error.
* This reduction, nonetheless, is only notable if G, is set equal 0.5.
* Consequently we can conclude that a complete solution of the GSP; should be obtained.

O In this regard, other numerical solutions have been attempted.
* For example 2D SENM with 45° homogenous flux expansion with current continuity or FDM discretization.
* This being said, the search for better solutions is still ongoing.

13 SNURPL




