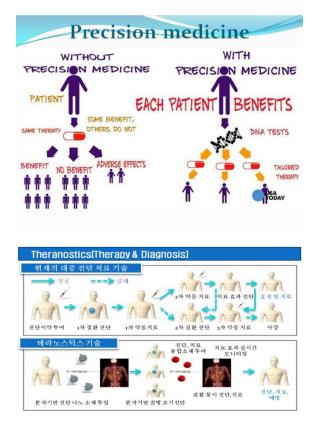
Transactions of the Korean Nuclear Society Virtual Spring Meeting July 9-10, 2020

Precision Medicine and Theranostic Radioisotopes

Seoung-Oh Yang, MD


Department of Nuclear Medicine

Dongnam Institute of Radiological and Medical Sciences (DIRAMS)

sosoyangmd@gmail.com

1. Introduction

As human life expectancy extends and interest in healthy living rises, social demands for innovative treatment technologies that can improve the "quality of life" of patients and their families are increasing. As one of the key medical technologies for this purpose, theranostics (Theranosis = Therapy +Diagnosis), a new treatment technology that simultaneously performs diagnosis and treatment, is in the spotlight. Theranostics is a new field of medical technology and requires further research for clinical application. In Korea, radiopharmaceuticals using medical radioisotopes, combined with nuclear medicine technology, are effective in the diagnosis and treatment of intractable diseases(cancer, brain diseases, etc.), and the production and research base are rapidly growing.

2. Production of Radioisotopes

Domestic production of radioisotopes for medical use comes from Hanaro, a multi-purpose reactor with 30MW. It is a great support in the supply of medical RI in Korea by producing ^{99m}Tc, ¹³¹I, ¹⁵³Sm, ¹⁶⁶Ho and ⁹⁰Y. Many medical isotopes have been available by the distribution of Cyclotrons through National policy implementation. Since the construction of a non-powered research reactor with 15 MW(thermal neutron flux: $3x10^{14}$ n/cm² · s) of planned isotope production, research facilities, and neutron research facilities, which will be completed within a few years, is under construction in Busan's Gijang-gun. It will play an important role in domestic production and distribution of isotope as well as creating research environment.

3. Theranostic Radioisotopes

Radioisotopes used for diagnosis and treatment should emit beta rays, which are weak in permeability but strong in tissue destruction, and also emit gamma rays. In addition, radionuclides with appropriate half-lives should be used to make images which can be utilized for diagnosis during the treatment course. Furthermore, the most important factor in the development of radiopharmaceuticals is the selection of appropriate radioisotopes. Factors to be considered in the selection of such radioisotopes include radiation emission characteristics, physical half-life, decay, productivity, cost and convenience of radioisotopes by giving priority to in vivo characteristics of radiopharmaceuticals to be developed. As with other therapeutic radioisotopes, the practical considerations for the selection of treatment simultaneously are not only high radiochemical purity but also high non-radioactive label efficiency stability and convenience.

In order to develop effective therapeutic radiopharmaceuticals, the selection of the appropriate

radioisotope is essential as well as suitable pharmacological aspects which can be integrated in the target region of the body to release desired therapeutic dose. Currently, ¹³¹I, ⁶⁴Cu, ⁶⁷Cu, ¹⁸⁶Re, ¹⁷⁷Lu, ⁹⁰Y, etc. are used, and the development for the production of carrier-free RI; ¹⁷⁷Lu, ¹⁴⁷Pm, ⁴⁷Sc, ⁶⁷Cu, and generator technology for ¹⁸⁸W/¹⁸⁸Re and ⁹⁰Sr/⁹⁰Y are in process.

Radioisotopes Candidates for Theranostics					
Radio- nuclide	Decay	T _{i/a}	Eβ,max (MeV)	Eγ(keV) (%)	Method of production
σSc	β.	3.34d	0.600	159(68.3)	${}^{c}Ca \rightarrow {}^{c}Sc$ (β · 4-53d)
94	β.	8.02d	0.606	365(81.7)	""Te(n, γ)""I
⁶⁴ Cu	β*,β*	12.70h	0.579	511(17.4)	⁶³ Cu(n,γ) ⁶⁴ Cu
"Cu	β.	61.83h	0.576	185(48.7)	⁶⁴ Cu(α,p) ⁶⁷ Cu
*9Sm	β.	46.5h	0.808	103(29.8)	"52Sm(n, y)"53Sm
®Re	β.	90.64h	1.070	137(9.4)	$^{s85}Re(n,\gamma)^{s86}Re$
""Re	β	17h	2.120	155(15.1)	$^{ste}Re(n,\gamma)^{ste}Re$ $^{ste}W \rightarrow ^{ste}Re(69.4d)$
ΨLu	β.	6.73d	0.498	208(11.0)	¹⁷⁶ Lu(n,γ) ¹⁷⁷ Lu ¹⁷⁷ Yb→ ¹⁷⁷ Lu(1.9nh)

4. Future Directions of Theranostic Radioisotopes

To make theranostics possible, it is essential to install non-power research reactors and install isotope accelerators to understand and develop radioisotopes which emit beta rays and gamma rays simultaneously. Numerous radiopharmaceuticals are already used in the treatment of intractable cancer, and the development of molecular target drugs, which are essential for medicines, is continuously increasing, raising the opportunity of developing radiopharmaceuticals for effective diagnosis and treatment.

Clinical application technology that enables diagnosis and treatment at the same time is a breakthrough technology that can increase cancer cure rate and reduce patient discomfort without time difference between diagnosis and treatment, leading the future knowledge-based industry as a core business of high value-added advanced medical industry that can be a future strategic field for improving the public health. However, in order to achieve such development, preparing a new governmental supply and demand system for radioisotopes and radiopharmaceuticals and supporting researcher's development of production technology is necessary.

REFERENCES

[1] Tapas Das, M.R.A. Pillai. Options to meet the future global demand of radionuclides for radionuclide therapy. Nuclear Medicine and Biology 40 (2013) 23–32.

[2] Sneha S. Kelkar, Theresa M. Reineke.Theranostics: Combining Imaging and Therapy.*Bioconjugate Chem.*, 2011, 22 (10), pp 1879–1903

[3] B.L. Zhuiko, Production of medical radionuclides in Russia : Status and future - a review. Applied Radiation and Isotopes 84(2014)48–56