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1. Introduction

More sensors are used in modern nuclear power plants 
(NPPs) with the wide application of digital instrument 
and control (I&C) systems. From the standpoint of safety 
and reliability, monitoring the condition of sensors is one 
of the critical tasks because the decision for control 
action, either by the operator or by the automatic 
controller, depends on the plant state reflected by sensors. 

Traditionally, manual surveillance for sensors and the 
instrument has been performed but faulty sensors may 
remain undetected for periods up to the surveillance 
frequency and unnecessary maintenance can cause a new 
fault on normal sensors [1]. Hence, on-line monitoring 
(OLM) techniques of sensors have been an active 
research area in NPPs. In particular, some researchers 
have tried to use data-driven models from artificial 
intelligence (AI) because it can be built on historical 
operation data without explicitly defined physical 
mechanisms. 

A basic principle using a data-driven model for sensor 
monitoring is to compare the reconstructed signals from 
a data-driven model and measured signals. If the 
reconstructed signal is not similar to measured one, it is 
considered that the sensor is faulty. To account for this 
principle, many deep learning-based methods have been 
developed. One of them is based on the reconstruction 
error of the generative model. This approach commonly 
trains a generative model with normal data in the training 
phase. Then, the reconstruction error generated by the 
trained model is used to determine normal or abnormal 
data.  

A representative generative model is the Variational 
AutoEncoder (VAE). The VAE can compute the 
reconstruction log-likelihood of the inputs modeling the 
underlying probability distribution of data. The variation 
generated by VAE is to use existing data to generate 
potential vector under the encoder, which is subject to 
Gaussian distribution and can well train the 
characteristics of the original data so that the generated 
data will be more reasonable and accurate [2]. However, 
the original VAE cannot model time series well because 
time series is usually high dimensional and has the 
complex temporal correlations. In order to solve this 
problem, Long Short Term Memory (LSTM) as the 
encoder and decoder part of the VAE framework can be 
used to model the time series data [3]. 

This study suggests an algorithm for the signal 
validation, based on VAE and LSTM. This algorithm 
consists of two steps: (1) sensor value reconstruction by 
VAE-LSTM and (2) detection of fault sensor by 

comparing the actual sensor value and reconstructed one. 
The threshold value was also determined to detect the 
faulty sensor, based on the reconstruction errors. The 
algorithm was implemented and tested by using a 
compact nuclear simulator (CNS) developed by Korea 
Atomic Energy Research Institute (KAERI) is used for 
acquiring simulation data.  

2. Methodology

The proposed algorithm is based on a combined 
architecture of the VAE and LSTM. This section briefly 
introduces VAE and LSTM methods. 

2.1 VAE 

The VAE is an unsupervised deep learning generative 
model, which can model the distribution of the training 
data. As shown in Fig. 1, the model’s forward 
propagation process is as follows: the input sample X 
passes through the encoder to obtain parameters of the 
latent space distribution. The latent variable z is obtained 
from sampling in the current distribution, then z is used 
to generate a reconstructed sample through the decoder 
[3]. 

The VAE is a generative model, which is comprised 
of a probabilistic encoder (𝑞𝑞∅(𝑧𝑧|𝑥𝑥), recognition model) 
and a decoder (𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧), generative model). The posterior 
distribution 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥)  is known to be computationally 
intractable. The VAE approximates 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥)  using the 
encoder 𝑞𝑞∅(𝑧𝑧|𝑥𝑥), which is assumed to be Gaussian and is 
parameterized by ∅ = {𝜇𝜇,𝜎𝜎}, and the encoder learns to 
predict ∅.  As a result, it becomes possible to draw 
samples from this distribution. 

In order to decode a sample z drawn from 𝑞𝑞∅(𝑧𝑧|𝑥𝑥), to 
the input x, the reconstruction loss also needs to be 
minimized. The reconstruction loss is represented by 
𝔼𝔼𝑞𝑞∅(𝑧𝑧|𝑥𝑥)

(log 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧)).  The VAE would approximately
map input x into a latent representation deterministically. 
This gets avoided by minimizing the reconstruction loss 
together with the Kullback Leibler (KL)-divergence 
between  𝑞𝑞∅(𝑧𝑧|𝑥𝑥)  and prior  𝑝𝑝𝜃𝜃(𝑧𝑧) . Here, 𝑝𝑝𝜃𝜃(𝑧𝑧)  is 
assumed to be multivariate Gaussian N(0, 1). Kingma et 
al. [4] showed that this loss function is a variational lower 
bound on log-likelihood of x, i.e., log 𝑝𝑝𝜃𝜃(𝑥𝑥) [5]. 

L(∅, θ, x) =  −𝔼𝔼𝑞𝑞∅(𝑧𝑧|𝑥𝑥)
(log 𝑝𝑝𝜃𝜃(𝑥𝑥|𝑧𝑧))

     + KL(𝑞𝑞∅(𝑧𝑧|𝑥𝑥) ∥ 𝑝𝑝𝜃𝜃(𝑧𝑧))  ≤  log 𝑝𝑝𝜃𝜃(𝑥𝑥) (1)    



Transactions of the Korean Nuclear Society Virtual Spring Meeting
July 9-10, 2020

Fig. 1. Architecture of the VAE 

2.2 LSTM 

The most distinctive feature of LSTM is the gate 
structure, which appears in the LSTM cell architecture as 
shown in Fig. 2. The cell state is an essential part of the 
LSTM. It passes through the whole like a conveyor belt, 
and the information can continue to pass to the next level 
without change. Gates are used to update or exclude 
information based on this cell state. Through the input 
modulation (𝑔𝑔𝑡𝑡)  and the input gate ( 𝑖𝑖𝑡𝑡 ), the LSTM 
regulates the degree to which the input is updated to the 
cell state. Eq. (2) represents the input conditioning node 
and has tanh(∅) activation function. Eq. (3) represents 
the input gate and has sigmoid (σ) activation function. 
Through the sigmoid activation function, it outputs a 
value of 0 or 1, which determines whether each 
component will be affected. The forget gate (𝑓𝑓𝑡𝑡 ) and 
output gate (𝑜𝑜𝑡𝑡) are represented by Eq. (4) and (5). This 
gating structure allows the cell state to control the 
influence of previous state information on the current 
state, update the information associated with the current 
input, and determine the influence level on the output 
through gate modulation [6]. 

𝑔𝑔𝑡𝑡 =  ∅(𝑊𝑊𝑔𝑔 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑔𝑔) (2) 
𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)   (3) 
𝑓𝑓𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)  (4) 
𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)  (5) 

Fig. 2. Architecture of the LSTM cell 

3. Algorithm for Signal Validation

3.1 Algorithm modeling 

The overall suggested process of the signal validation 
by using VAE-LSTM is shown in Fig. 3. In this study, a 
total of 10 sensors are considered, i.e., RCS loop #1, #2, 
and #3 average temperature, pressurizer pressure, feed 
water line #1, #2, #3 flow, loop #1, #2, and #3 steam 
generator level. 

Input preprocessing is performed to convert the sensor 
values to get better performance. Because the sensor 
values have the different scales, normalizing the value 
can help prevent convergence at the local minimum. The 
min-max normalization method [7] is applied to scale the 
input values for the input layer of the VAE-LSTM model. 
The minimum and maximum are determined within the 
input values. Input values are calibrated within the range 
of 0 to 1 through Eq. 6. 

𝑋𝑋𝑋𝑋𝑜𝑜𝑋𝑋𝑋𝑋 = (𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)
(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)

(6) 

The structure of VAE-LSTM proposed in this study is 
shown in Fig. 3. The selected sensor’s data are input into 
the encoder. The encoder consists of 5 layers with an 
input layer (10 time steps and 10 nodes), LSTM layer (60 
nodes), σ  layer (30 nodes), μ  layer (30 nodes), and z 
layer (30 nodes). The input layer is connected to an 
LSTM layer so that input values pass through an LSTM 
layer. An LSTM layer outputs means and variances. 
Then, the latent variables z are obtained from sampling 
in z layer. The decoder consists of two LSTM layers (10 
time steps and 60 nodes, and 10 time steps and 10 nodes). 
Finally, the latent variables z are decoded by using two 
LSTM layers. The loss function is Eq. 1. For optimizer, 
Adam [8] is used, which is the most commonly used 
optimizer at present. After the training, the proposed 
VAE-LSTM outputs the reconstructed 10 sensors data. 

The output post-processing calculates the residual 
which is the square of the error between the input and the 
reconstructed output obtained from the well-trained 
model. A large residual can indicate that the senor may 
be faulty. For instance, for the train dataset that include 
only normal sensor data, a trained model will produce a 
low residual since it was already trained to reconstruct 
the data very well. On the contrary, for the input from a 
faulty sensor, the trained model will produce high 
residual since it is not trained to reconstruct faulty sensor 
data. Therefore, it is necessary to define a threshold to 
determine normal or faulty sensor.  

To define the threshold, this study applied a method 
suggested by W.A. Shewhart [9], based on the 
reconstruction errors. The basic characteristics of a 
Shewhart chart are the Center Line (CL), the Upper 
Control Limit (UCL), and the Lower Control Limit (LCL) 
in Eq. 7, 8, and 9. The μ and σ mean the mean value and 
standard deviation of each residual.  
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UCL =  μ + 3σ (7) 
CL =  μ  (8) 
LCL =  μ − 3σ  (9) 

Faulty sensor is detected by comparing the residual 
with a predefined threshold. If the residual exceeds the 
predefined threshold, it means that the sensor is faulty. 
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Fig. 3. Algorithm for signal validation 

4. Experiments

4.1 Dataset preparation 

Datasets are prepared from the 10 sensor variables that 
are acquired during full power steady-state from CNS. 
Datasets are divided into train, validation, and test 
dataset. The train and validation dataset only includes 
normal sensor data. For the test dataset, it consists of 
normal sensor data and faulty sensor data. 

4.2 Training 

The VAE-LSTM is trained using the train dataset. The 
train dataset with 4990 samples and validation dataset 
with 2000 samples including normal sensor data are used. 
Based on the train dataset, the VAE-LSTM model is 
trained to reconstruct inputs as outputs. The training aim 
is to minimize the loss function discussed in Section 2.2. 
The model hyper parameters are set by random grid 
search method because there is no golden rule for hyper 
parameter determination to optimize the model [10]. As 
the hyper parameters, length of latent, batch size, and 
epochs are 30, 32, and 1000. As shown in Fig. 4, the 
training result shows that the loss value on the train and 
validation dataset seems to converge nicely.  

Fig. 4. Training result of the VAE-LSTM 

4.3 Test result 

Feed water line #1 flow sensor is used as a test signal 
to validate the fault detection performance. For simulated 
fault, feed water line #1 flow decreased to 0.02%/sec 
from 510 to 800 s. The normal signal, the faulted signal, 
and the estimated signal using VAE-LSTM are shown in 
Fig. 5, which compares the normal signal and the 
estimated signal to show that the normal signal is well 
reconstructed by the sensor value reconstruction function 
using VAE-LSTM. The second plot in Fig. 5 shows 
residual values generated by differencing the faulted and 
estimated signal. The threshold of feed water line #1 flow 
sensor is defined by Shewhart control limits described in 
Eq. (7), (8), and (9) (i.e., UCL = 0.0148 and LCL = -
0.0144). By predefined threshold, faulty feed water line 
#1 flow sensor is detected from 510 to 800 s aside from 
peak points at 430 s and 1050 s. 

Fig. 5. Test result for the faulty sensor detection 
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4. Conclusions

This study suggests an algorithm for the signal 
validation, based on VAE and LSTM. This algorithm 
consists of two steps: (1) sensor value reconstruction by 
VAE-LSTM and (2) detection of fault sensor by 
comparing the actual sensor value and reconstructed one. 
The threshold value was also determined to detect the 
faulty sensor, based on the reconstruction errors. The 
algorithm was implemented and tested by using a 
compact nuclear simulator (CNS) developed by Korea 
Atomic Energy Research Institute (KAERI) is used for 
acquiring simulation data. The test result shown that 
VAE-LSTM based signal validation algorithm is able to 
reconstruct the normal sensor and detect the faulty sensor. 
However, the optimization of the model should be 
continued so that VAE-LSMT can reconstruct the 
sensor’s behavior precisely. In addition, it is necessary to 
define more detailed criteria of the threshold because the 
performance of faulty sensor detection depends on the 
threshold. 
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