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1. Introduction 
 

Depth estimation of contaminated soil by Cs-137 is a 
crucial issue for effective decommissioning and safe 
decontamination. Prediction of contamination depth is 
economically important because disposal of radioactive 
waste imposes cost during the decommissioning process. 
If Cs-137 spends a considerable long time near the plants' 
root, it can be included human food chains. On the other 
hand, the deep penetration of Cs-137 in the basement 
result in groundwater contamination.[1] Mapping the 
depth distribution of contaminated soil for a large 
decommissioning site is an essential element to ensure 
the safety of the nearby area.  

Traditional intrusive methods such as core sampling 
have been widely used to investigate the depth 
distribution of Cs-137, but it is expensive and time-
consuming. Therefore, nondestructive methods have 
been studied extensively in recent years. Among the 
several methods, Lead plate and Collimator methods use 
a heavy structure with the detector and require multiple 
measurements. Various methods that use specific peaks 
of the spectrum like peak-to-valley is inaccurate about 
the distorted and noisy spectrum. Some of them need 
additional experiments or simulations to establish a prior 
model. Depth estimation applying Bayesian inference[2] 
achieved higher accuracy with the only single 
measurement using NaI(Tl) detector. Although, the 
Bayesian inference is inconsistent with real-time 
estimation. The real-time scanning of large areas and the 
fast announcement of restrictions about land use is 
needed to minimize the damage to nearby residents.  

To succeed in real-time depth estimation of Cs-137, 
this paper applied a machine learning algorithm, 
Artificial Neural Network(ANN). This paper aims to 
develop an optimized ANN for estimation of the accurate 
depth of where Cs-137 is located. We also showed that 
the ANN model works well for the spectrum under 
various measurement conditions like gain-shift and short 
acquisition time. 

 
2. Methods and Results 

 
2.1 Experimental Setup 

 
The experimental part of this study was carried out to 

obtain the base spectrum for the generation of training 
data. Figure 1, shows the experimental setup which 
composed of a sandbox and 2-inch diameter NaI(Tl) 
detector with a cylindrical lead collimator of 2cm 

thickness. The inner dimensions of the sandbox were 50 
cm in length, 40 cm in width, 40 cm in height, and it's 
acrylic wall thickness was 0.3 cm. The Cs-137 source 
with radioactivity of 0.94 μCi was buried in fine silica 
sand. The distance between the sand surface and the 
geometrical center of the detector was 6 cm, and Cs-137 
source was placed in sand in the depth of 0, 1, 3, 5, 7, 10, 
15, 20, 25, 30, 40, and 50 cm. The spectra to be used as 
the basis of the training set were measured for 50 minutes 
to ensure the accuracy of training data. The measurement 
time of test spectra was chosen as 10 sec, 1 min, and 10 
min to evaluate ANN’s prediction ability about short 
acquisition time. The gain was not carefully adjusted to 
see the ability of the trained model to overcome the gain 
change of the detection system 

 
2.2 Training Data Establishment 
 

The quality and quantity of training data determine 
ANN’s performance. To construct enough amount of 
training data set, set of  PMF(probability mass function) 
about each spectrum measured with the different 
situations; depth(0 ~ 50 cm) and gain(0.92 ~ 1.08). By 
inputting the total count value to the constructed PMF, it 
is possible to generate an infinitely large amount of 
spectra as the input value is changed. Before the build of 
PMF, the base spectrum of each PMF should be 
determined. Part of the total count corresponding to the 
background spectrum was removed from the spectrum. 
The construction of base spectra at an interval of 1cm 
between 0 to 50 cm was achieved through the linear 
interpolation within the measured base spectra. (Figure 
1.) Each spectrum was further expanded with 17 different 
gains. A total of 867 base spectra with different depths 
and gains produced a set of PMF. 

 

 
Fig. 1. Experimental setup and Spectra obtained as a result of 
interpolation 
 
   The total count as input to PMF was determined by the 
following Eq(1). 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (1) 
where 𝐴𝐴 is activity(Bq), P is total x-ray and gamma-ray 
emission probability(𝑠𝑠−1), 𝛿𝛿 is the intrinsic efficiency 
of the detector, 𝜀𝜀 is the correction coefficient due to 
attenuation, 𝑡𝑡 is acquisition time. 𝐴𝐴 and P are the 
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property of radioactive source, 𝛿𝛿 is experimentally 
determined.[3] 𝜀𝜀 can be described as Eq(2).  

ε =
1

4𝜋𝜋(ℎ + 𝑧𝑧)2
𝑒𝑒−𝜇𝜇𝐴𝐴ℎ𝑒𝑒−𝜇𝜇𝑠𝑠𝑧𝑧 (2) 

where h is the detection height from the surface of the 
soil(cm), z is the buried depth of source(cm), 𝜇𝜇𝐴𝐴 and 
𝜇𝜇𝑠𝑠 are attenuation coefficients of soil and air which 
determined by fitting the experimental values(𝑐𝑐𝑐𝑐−1). 
The Cs-137 with 0.94, 0.7, 0.5 μCi activity and 
acquisition time with 10, 60, 600, 1500, 3000 sec were 
substituted to Eq(1). The total count values from the 
substitution result became input data for each PMFs 
created above. As a result, a total of 13005 training sets 
were created, and 20% of them were used as validation 
sets during the training process.  
 
2.3 Artificial Neural Network optimization 

 
Hyperparameter in machine learning means the 

values are preset before the learning process begins. To 
find the optimal value of hyperparameter the Bayesian 
Optimization was applied. Bayesian Optimization 
simultaneously reflects ‘prior knowledge’ when 
researching new hyperparameter values each time. 
Since it is more efficient than simply repeating 
randomization, it has better performance than the other 
existing methods like Random search during the same 
time. The input distribution of each hyperparameter was 
determined within the range we want to examine, and 
Bayesian optimization was done using the Python 
package GPyOpt version 1.2.6. Table 1. shows the 
optimized value of each hyperparameter which applied 
to ANN constructed through the Python package Keras, 
version 2.3.1. Hyperparameter optimization was 
performed for 4 cases with the different number of 
hidden layers of ANN, and as a result, the structure with 
one hidden layer with the best performance was 
selected as the final model. 

 
Table 1. Optimal value of hyper-parameters of ANN 

No. of 
neuron 
in input 
layer 

No. of 
neuron 
in 
hidden 
layer 

Drop 
out rate 
in input 
layer 

Drop 
out rate 
in input 
layer 

Learnin
g rate 

Batch 
size 

Activation 
function 

1135 1297 0.2356 0.3748 0.0015 3000 ReLu 

 
To effectively reflect changes according to the 

depth of the spectrum, the counts from channels 15 to 
444 out of a total of 512 channels were put as input. As 
a loss function for monitoring the performance of ANN, 
Mean Squared Error (MSE) was used.  
 
2.4 Results 

The regression result is represented in figure 2 
indicate the closeness among the true depth and 
predicted depth from ANN about spectra measured for 
10 min. The fitted equation in the graph shows the 
accuracy of the trained model. The slope of the fitted 
equation is 1.0376, it means ANN well estimated the 
depth from the input spectrum. Since the effect of noise 

and statistical error increases due to the decrease in the 
count, it is observed that the accuracy of prediction 
decreases when the depth is more than 35 cm. However, 
all predicted values are included in the 95% confidence 
interval up to 30 cm. This is a more advanced result 
than 21 cm obtained through Bayesian inference under 
the same experimental conditions.  

As a result of testing with a short measurement time 
spectrum, the accuracy of the model was relatively 
degraded and the regression results were 
underestimated compared to the actual values. 
Spectrum with extremely short acquisition time 
increases statistical fluctuation and the features of the 
spectrum due to the change in the depth do not appear 
well. 

 
Fig. 2 Regression plot between ANN prediction and true depth 
for spectrum with 10 min acquisition time 
 

 
Fig. 3 Regression plot between ANN prediction and true 

depth for spectrum with 1 min and 10 sec acquisition time  
 

3. Conclusions 
 

In this study, ANN was applied to evaluate the depth 
contaminated by Cs-137 in real-time. A maximum 
reliable estimated depth is improved over recent research 
results. It was shown that depth evaluation is possible 
even in harsh environments such as gain shift or short 
measurement time. Further research should be directed 
at determining how to enhance the performance for a 
short acquisition time spectrum for fast inspection of 
large areas. Furthermore, the model will be developed to 
enable estimation of the radioactivity along with the 
depth. 
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