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1. Introduction

Diagnosis in abnormal situations is known to be one 

of the difficult tasks in nuclear power plants (NPPs). To 

begin with, there is too much information to consider 

when operators make decisions. NPPs have not only 

approximately 4,000 alarms and monitoring devices in 

the main control room (MCR) but also more than one 

hundred operating procedures for abnormal situations [1]. 

These information overloads could confuse operators as 

well as increase the likelihood of error caused by an 

increase in the mental workload of operators. In addition, 

some abnormal situations require a very quick diagnosis 

and response to prevent the reactor from being tripped. 

To deal with these issues, several researchers have 

developed operator support systems and algorithms to 

reduce burdens for operators using computer-based and 

artificial intelligence (AI) techniques, such as support 

vector machines (SVM), expert systems, and artificial 

neural networks (ANNs) [2-4]. Among them, ANNs are 

regarded as one of the most relevant approaches to 

handle pattern recognition as well as huge nonlinear data. 

Thus, several studies have proposed diagnostic 

algorithms using ANNs [2]. 

Even though several diagnostic algorithms using 

ANNs have performed well in trained cases, there are 

some potential improvements. One of them is that 

unknown events are not identified as “unknown” because 

an ANN algorithm that is trained with the supervised 

learning tries to generate one of trained cases even if it is 

not trained. Therefore, there is a potential that the 

algorithm produces wrong results when untrained events 

occur. This may mislead operators when the algorithm is 

involved in an operator support system.  

Another is that an algorithm cannot confirm whether 

its outputs are reliable or not. The previously developed 

algorithm provides multiple diagnosis results with a 

probability or confidence [2].  This may impose another 

burden on operators because they have to verify which 

diagnosis result is consistent with the current situation. 

In this light, this study aims to propose a diagnostic 

algorithm for abnormal situations in NPPs that can 

identify unknown events and confirm results itself. The 

diagnostic algorithm uses long short-term memory 

(LSTM) and variational autoencoder (VAE). LSTM is 

applied for diagnosing abnormal situations as a primary 

network. VAE based assistance networks are applied for 

identifying an unknown event and confirming diagnosis 

results. The diagnostic algorithm for abnormal situations 

is implemented, trained, and tested for the demonstration 

using the compact nuclear simulator (CNS). 

2. Methodology

2.1. Long Short Term Memory 

LSTM is a special kind of recurrent neural networks 

(RNNs), capable of learning long-term dependency 

problem. A most distinctive feature of LSTM, compared 

to conventional RNNs, is the gate structure. The gate 

structure consists of an input gate, forget gate, and an 

output gate. The output from the input is regulated by 

how much it will be reflected through the input gate, how 

much forget it will be through the forget gate, and how 

much it will be output through the output gate. As shown 

in Fig. 1, the input sample 𝑥 passes through the whole 

like a conveyor belt, and the information can continue to 

pass to the next level without change. In Fig. 1, the forget 

gate, input gate, output gate, and cell structure are 

denoted by 𝑓𝑡 , 𝑖𝑡 , 𝑜𝑡  and 𝑐𝑡   σ represent a sigmoid

function. Through this structure of gating logics, the 

effect of previous state information on the current state 

can be reflected appropriately, the information associated 

with the current input can be updated, and the level of 

impact on the output can be determined. 

Fig. 1. The architecture of the LSTM. 

2.2. Variational Autoencoder 

The VAE is an unsupervised deep learning generative 

model, which can model the distribution of the training 

data. If input data is similar to training data, the output 

appears to be similar to input, but if input data is not 

similar to training data, a probabilistic measure that takes 

into account the variability of the distribution variables 

decreases [5]. Park et al. have suggested a fault detection 

algorithm using the reconstruction log-likelihood of VAE 

as well as showed the compatibility of VAE with LSTM 

[5,6].  

The VAE provides a flexible formulation for 

interpreting encoding 𝑧  as a potential variable in 

probabilistic generation models. As shown in Fig. 3, the 

input sample 𝑥  passes through the encoder to obtain 
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parameters of the latent space distribution. The latent 

variable 𝑧  is obtained from sampling in the current 

distribution, then 𝑧  is used to generate a reconstructed 

sample through the decoder [6]. It is comprised of a 

probabilistic encoder (𝑞𝜙(𝑧|𝑥)) and a decoder (𝑝𝜃(𝑥|𝑧)).

Since the posterior distribution (𝑝𝜃(𝑧|𝑥)) is intractable,

the VAE approximates 𝑝𝜃(𝑧|𝑥)  using the encoder

𝑞𝜙(𝑧|𝑥) , which is assumed to be Gaussian and is

parameterized by ∅  and the encoder learns to predict 

latent variables 𝑧 . As a result, it becomes possible to 

draw samples from this distribution. 

To decode a sample 𝑧  drawn from 𝑞𝜙(𝑧|𝑥) , to the

input 𝑥, the reconstruction loss (as shown in Eq. (1)) also 

needs to be minimized. The first term of Eq. (1) is the KL 

divergence between the approximate posterior and the 

prior latent variable 𝑧. The second term of Eq. (1) can be 

understood in terms of the reconstruction of 𝑥  through 

the posterior distribution 𝑞𝜙(𝑧|𝑥)  and the likelihood

𝑝𝜃(𝑥|𝑧) [5].

𝐿(𝜃, 𝜙; 𝑥(𝑖)) = −𝐷𝐾𝐿(𝑞𝜙(𝑧|𝑥(𝑖))||𝑝𝜃(𝑧)) + 
𝔼𝑞𝜙(𝑧|𝑥(𝑖))[𝑙𝑜𝑔𝑝𝜃(𝑥|𝑧)] (1) 

Fig. 2. The architecture of the VAE. 

3. Development of an Abnormal Diagnosis

Algorithm 

This chapter suggests a diagnostic algorithm for 

abnormal situations using LSTM and VAE. Fig. 3 shows 

the process of the algorithm. It comprises 4 steps  Step 1) 

input preprocessing, Step 2) unknown event 

identification, Step 3) event diagnosis, Step 4) 

confirmation of diagnosis results. The details of each step 

are as below. 

Fig. 3. Overview of a diagnostic algorithm for the abnormal 

situation. 

3.1 Input preprocessing 

The first step of the algorithm is to process plant 

parameters to be suitable for the input of networks. The 

inputs for the LSTM and VAE networks are selected 

based on procedures and their importance that can affect 

the plant states and system availability. These inputs 

should have a range of values from 0 to 1. However, plant 

parameters have different ranges of values.  

Generally, variables with higher values will have more 

impact on the result of networks. However, this does not 

necessarily mean that this is more important as a 

predictor. This problem makes local minima. The min-

max normalization can help prevent local minima and 

also increases the learning speed. Thus, the input to the 

networks is calculated by Eq. (2). 𝑥𝑡 is the current value

of plant parameters while 𝑥𝑚𝑎𝑥  and 𝑥𝑚𝑖𝑛  are the

maximum and minimum values of collected data, 

respectively. Through this equation, the input has a range 

of 0 to 1.  

𝑥𝑛𝑜𝑟𝑚 = (𝑥𝑡 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)  (2) 

3.2 Unknown event identification 

This step is to identify the unknown event using 

combining VAE and LSTM. Fig. 4 shows an overview 

process of unknown event identification. This study 

defines the anomaly score using negative log-likelihood. 

If the anomaly score is below the threshold, the event is 

identified as a known event for which the diagnosis 

network in the next step has been trained. If the anomaly 

score is above the threshold, the event is unknown. In this 

study, the threshold is determined using a three-sigma 

limit. 

Fig. 4. The process of unknown event identification. 

3.3 Event diagnosis 

This step produces diagnostic results for the plant 

situation using an LSTM network. Fig. 5 shows the 

process of diagnosing events. This LSTM receives 

normalized plant parameters and produces identified 

events for the abnormal situation with their probabilities. 

Then, the output is post-processed by using the softmax 

function. The softmax function is an activation function 

commonly used in the output layer of the deep learning 

model. Then, This step chooses the event of the highest 

probability and provides it for the next step, i.e., the 

confirmation of diagnosis results. 

Fig. 5. The process of event diagnosis. 
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3.4 Confirmation of diagnosis results 

This step is to confirm whether the current abnormal 

situation is identical to the event selected in the previous 

step. Fig. 6 shows the process of confirmation of 

diagnosis results. The confirmation algorithm has a 

library of VAE networks that already have been trained. 

This step selects the VAE network from the library for 

the event identified in the previous step. Then, it checks 

whether the current situation is identical to the event 

expected by the selected VAE. If the anomaly score is 

below the threshold, the algorithm declares that the 

diagnosis results in the previous step are correct and 

confirmed. If the anomaly score goes beyond the 

threshold, it returns to the previous step. This step also 

determines each threshold using a three-sigma limit 

similar way to Step 2). 

Fig. 6. The process of confirmation of diagnosis results. 

4. Experiment

This study implemented the suggested algorithm by 

using an NPP simulator. 

4.1 Data collection 

In order to build, train, and validate the suggested 

algorithm, a compact nuclear simulator (CNS) was used 

as a real-time testbed. The CNS references a 

Westinghouse 900MWe, three loops, pressurized water 

reactor. Total 20 abnormal situations and 558 cases are 

simulated to collect data. Table 1 shows the abnormal 

scenarios and the numbers of simulations for each even. 

The scenarios include representative abnormal situations 

in actual NPPs such as instrument failures (1 to 6), 

component failures (7 to 16), and leakages (17 to 20).  

Based on the abnormal operating procedures of 

reference plant, 139 parameters were selected for the 

inputs, including plant variables (e.g., temperature or 

pressure) and component states (e.g., pump or valve 

status). The 139 parameters are collected every second in 

the simulated cases. 

Among 20 scenarios collected, 409 cases of 15 

scenarios, except five scenarios for validating untrained 

events, are used for training. Then, total 149 cases are 

used for the validation of algorithm, including five 

untrained events, i.e., 3, 13, 14, 15, and 20. In addition, 

to be similar to the real NPPs data, Gaussian noise with 

5% is added to the collected data  

Table I: Scenarios 

No. Scenarios Cases 

1 Fail of Pressurizer pressure channel (High) 18 

2 Fail of Pressurizer pressure channel (Low) 27 

3 Fail of Pressurizer water level channel (High) 6 

4 Failure of pressurizer water level channel (Low) 15 

5 Failure of steam generator water level channel (Low) 40 

6 Failure of steam generator water level channel (High) 42 

7 Control rod drop 48 

8 Continuous insertion of control rod 8 

9 Continuous withdrawal of control rod 8 

10 Opening of pressurizer PORV 52 

11 Failure of pressurizer safety valve 51 

12 Open of pressurizer spray valve 50 

13 Stopping of charging pump 1 

14 Stopping of 2 main feedwater pumps 3 

15 Main steam line isolation 3 

16 Rupture of front part regenerative heat exchanger 50 

17 
Leakage from chemical volume and control system 

(CVCS) to Component Coolant Water (CCW) 
50 

18 Leakage at the outlet of charging control flow valve 30 

19 
Leakage into the CCW system from Reactor Coolant 

System (RCS) 
30 

20 Leakage from steam generator tube 36 

Total 568 

4.2 Training and optimization 

As mentioned above, total 409 scenarios (i.e., 191,566 

datasets for 139 parameters) are trained. In order to 

optimize the LSTM network in Step 3). Diagnosis, this 

study used the manual search method, adjusting the 

hyperparameters one by one (it is known that there is no 

golden rule for hyperparameter determinization to 

optimize the network). Table Ⅱ shows the accuracy 

comparison results for the different structures of 

networks. The accuracy is defined by Eq. (3). The LSTM 

network with 10 input sequence lengths, 3 layers, and 32 

batch sizes is selected.  

Table Ⅱ: Accuracy comparison results between networks 

No. Sequence Batch sizes Layers Accuracy 

1 5 32 2 0.9668 

2 5 32 3 0.9638 

3 5 64 2 0.9634 

4 5 64 3 0.9650 

5 10 32 2 0.9768 

6 10 32 3 0.9746 

7 10 64 2 0.9764 

8 10 64 3 0.9741 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑑𝑎𝑡𝑎

𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑑𝑎𝑡𝑎
 (3) 

The algorithm has 17 VAE networks, i.e., one for Step 

2 Unknown Event Identification and 16 for Step 4 

Confirmation. The VAE network was trained until the 

cosine similarity was more than 0.99. Cosine similarity 

is a measure of similarity between two non-zero vectors 

of an inner product space that measures the cosine of the 

angle between them. The cosine of 0° is 1, and it is less 
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than 1 for any angle. Cosine similarity is defined by Eq. 

(4). 𝑋𝑖 is the value of plant parameters at  time 𝑖 and �̂�𝑖 is 

the value of restored 𝑋𝑖 at time 𝑖 by VAE.  

𝐶𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑  𝑋𝑖 ∗ �̂�𝑖

𝑛
𝑖=1

√∑ (𝑋𝑖)2 ∗𝑛
𝑖=1 √∑ (�̂�𝑖)2𝑛

𝑖=1

 (4) 

4.3 Validation 

A validation has been carried out for 149 scenarios (i.e., 

58,109 datasets). Among them, 100 cases and 47,872 

datasets are used for the trained events while 49 cases 

and 10,237 datasets are for untrained events. The 

validation showed that the implemented algorithm 

produced correct results for all the test cases. Fig. 7 

illustrates how the algorithm works for diagnosing a 

trained event which is Ab 08, continuous insertion of 

control rod. Step 1) normalizes plant parameters, and 

then Step 2) identifies the current situation as a trained 

event. Step 3) diagnoses the event as Ab 08 and Step 4) 

confirms that this diagnosis result is correct. Finally, “Ab 

08. Continous insertion of control rod” is presented as

the diagnosis result for the current situation. 

 Fig. 8 show an illustration for diagnosing an untrained 

event, which is Ab 20, leakage from steam generator tube. 

In this case, Step 2) identifies the event as an untrained 

because the construction error goes beyond the threshold. 

Thus, the message “Unknown Even” is provided.  

Fig. 7 An illustration for diagnosing an trained event 

Fig. 8 An illustration for diagnosing an trained event 

5. Conclusion

This study has proposed an algorithm that uses LSTM 

and VAE to diagnose abnormal situations in NPPs. The 

suggested algorithm has a capability of judging unknown 

situations, diagnosing the situation and confirming the 

result. In addition, for more realistic algorithm, noise-

added signals are also considered. The validation result 

showed that the suggested algorithm can provide correct 

information as intended. This algorithm will be applied 

in an operator support system to help operator’s situation 

awareness in the abnormal situation at NPPs.  

Acknowledgment 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korean 

government (Ministry of Science and ICT) 

(2018M2B2B1065651) And this research was supported 

by Basic Science Research Program through the National 

Research Foundation of Korea (NRF) funded by the 

Ministry of Science, ICT & Future Planning 

(N01190021-06) 

REFERENCES 

[1] BAE, Hyeon  CHUN, Seung-Pyo  KIM, Sungshin. 

Predictive fault detection and diagnosis of nuclear power plant 

using the two-step neural network models. In: International 

Symposium on Neural Networks. Springer, Berlin, Heidelberg, 

2006. p. 420-425.  

[2] Yang, Jaemin, and Jonghyun Kim. "An accident diagnosis 

algorithm using long short-term memory." Nuclear 

Engineering and Technology 50.4 (2018): 582-588. 

[3] NA, Man Gyun  PARK, Won Seo  LIM, Dong Hyuk. 

Detection and diagnostics of loss of coolant accidents using 

support vector machines. IEEE Transactions on Nuclear 

Science, 2008, 55.1: 628-636. 

[4] WANG, Wenlin  YANG, Ming  SEONG, Poong Hyun. 

Development of a rule-based diagnostic platform on an object-

oriented expert system shell. Annals of nuclear energy, 2016, 

88: 252-264. 

[5] PARK, Daehyung; HOSHI, Yuuna; KEMP, Charles C. A 

multimodal anomaly detector for robot-assisted feeding using 

an lstm-based variational autoencoder. IEEE Robotics and 

Automation Letters, 2018, 3.3: 1544-1551.  

[6] C. Zhang, S. Li, h. Zhang, and Y. Chen, VELC: A New 

Variational AutoEncoder Based Model for Time Series 

Anomaly Detection, 2019. 




