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1. Introduction 

 

The adjoint solution of the Boltzmann neutron 

transport equation has been known as the importance 

of the neutrons to a response within a particular system 

[1] and the adjoint solution or flux is widely used in 

reactor analysis where the sensitivity calculations are 

performed with the perturbation theory. Also, in 

shielding design analysis, the adjoint flux has an 

important role because it can be used with variance 

reduction technique. 

The objective of this work is to implement and verify 

an option for adjoint transport calculation in the MUST 

code [2, 3], which is a deterministic transport code 

using tetrahedral meshes for complicated geometrical 

problems. In particular, the adjoint calculation was 

performed with a small change of the forward transport 

calculation procedure. The adjoint solution obtained by 

MUST code calculation for a fixed source problem was 

verified by showing that the detector response 

calculated by the forward neutron flux is the same as 

the one obtained with the adjoint flux and the external 

forward source while the adjoint solution for 

eigenvalue problem was by showing that the forward 

and adjoint eigenvalues are same each other. 

Furthermore, the neutron fluxes in these verification 

problems were compared with the results calculated by 

using PARTISN code [4].  

 

2. Theory and Methods 

 

In this section, the adjoint transport equation is 

reviewed and the procedure for adjoint flux calculation 

is described. The starting equation is the adjoint 

transport equation with an external source, which is 

given by 

−�̂�. 𝛻𝜓+(𝑟, 𝐸, �̂�) + 𝜎𝑡(𝑟, 𝐸)𝜓
+(𝑟, 𝐸, �̂�) = ∫ 𝑑𝐸′

∞

0

 

∫ 𝑑�̂�′
4𝜋

𝜎𝑠(𝑟, 𝐸 → 𝐸′, �̂�. �̂�′)𝜓+(𝑟, 𝐸′, �̂�′) 
 

+𝑆+(𝑟, 𝐸, �̂�). (1) 

For the vacuum boundary condition, the adjoint 

angular fluxes for outgoing directions are zero, and so 

the adjoint calculation with sweeping is started from 

the opposite directions in comparison with the forward 

transport. To explain how we can use the forward 

transport calculation procedure for adjoint flux, we 

rewrite Eq. (1) by replacing −�̂�  with a new angular 

variable �̂� where the new variable is the same as in the 

forward solution as follows: 

𝛺.̂ 𝛻𝜓+(𝑟, 𝐸, −�̂�) + 𝜎𝑡(𝑟, 𝐸)𝜓
+(𝑟, 𝐸, −�̂�) = ∫ 𝑑𝐸′

∞

0

 

∫ 𝑑�̂�′
4𝜋

𝜎𝑠(𝑟, 𝐸 → 𝐸′, −�̂�. �̂�′)𝜓+(𝑟, 𝐸′, �̂�′) 
 

+𝑆+(𝑟, 𝐸, −�̂�). (2) 

The left hand side of Eq. (2) is actually the same form 

as that of the forward transport equation, except that the 

angular flux is at the opposite direction (−Ω̂ ). The 

scattering cross section in the right hand side of Eq. (2) 

can be expanded by using Legendre polynomial and the 

additional theorem of spherical harmonics as 

𝜎𝑠(𝑟, 𝐸 → 𝐸′, −�̂�. �̂�′) =∑(2𝑙 + 1)

𝐿

𝑙=0

𝜎𝑠𝑙(𝑟, 𝐸 → 𝐸′) 

[𝑃𝑙(𝜇)𝑃𝑙(𝜇′) + ∑ 𝑌𝑙𝑚
𝑒 (�̂�)

𝑙

𝑚=1

𝑌𝑙𝑚
𝑒 (�̂�′) 

 

− ∑ 𝑌𝑙𝑚
𝑜 (�̂�)

𝑙

𝑚=1

𝑌𝑙𝑚
𝑜 (�̂�′)]. (3) 

It can be seen from Eq. (3) that the differences 

between scattering source terms in the adjoint and 

forward transport equations are the arrow direction in 

energy transfer by scattering cross-section and the sign 

of the odd parity spherical harmonic term. The flux 

moments in adjoint calculation are defined by  

𝜙𝑙
+(𝑟, 𝐸) = ∫ 𝑑Ω̂

4𝜋

𝑃𝑙(𝜇)𝜓
+(𝑟, 𝐸, −Ω̂), 

𝜙𝑙𝑚
+,𝑒(𝑟, 𝐸) = ∫ 𝑑Ω̂

4𝜋

𝑌𝑙𝑚
𝑒 (Ω̂)𝜓+(𝑟, 𝐸, −Ω̂), 

and 

𝜙𝑙𝑚
+,𝑜(𝑟, 𝐸) = ∫ 𝑑Ω̂

4𝜋

𝑌𝑙𝑚
𝑜 (Ω̂)𝜓+(𝑟, 𝐸, −Ω̂). (4) 
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The flux moments in Eq. (4) are updated using the 

angular flux at the opposite direction (−Ω̂) because it is 

the result of Eq. (2). By using the odd moment of 

adjoint flux given by Eq. (4), the negative sign of the 

odd parity spherical harmonic in Eq. (3) can be 

removed. Finally, the form of adjoint transport equation 

without fission source is given by 

�̂�. 𝛻𝜓+(𝑟, 𝐸, −�̂�) + 𝜎𝑡(𝑟, 𝐸)𝜓
+(𝑟, 𝐸, −�̂�) = 

∑(2𝑙 + 1)

𝐿

𝑙=0

∫ 𝑑𝐸′
∞

0

𝜎𝑠𝑙(𝑟, 𝐸 → 𝐸′)[𝑃𝑙(𝜇)𝜙𝑙
+(𝑟, 𝐸′) 

+ ∑ 𝑌𝑙𝑚
𝑒 (�̂�)

𝑙

𝑚=1

𝜙𝑙𝑚
+,𝑒(𝑟, 𝐸′) 

+ ∑ 𝑌𝑙𝑚
𝑜 (�̂�)

𝑙

𝑚=1

𝜙𝑙𝑚
+,𝑜(𝑟, 𝐸′)]  

+𝑆+(𝑟, 𝐸, −�̂�). (5) 

Therefore, the adjoint transport equation is very 

similar to the forward transport equation if the 

scattering cross section matrix is transposed. The 

within group calculation for the adjoint flux can be 

solved by the same procedure as in the forward 

calculation. The scattering source can be updated after 

each iteration using the angular adjoint flux in opposite 

direction as presented in Eq. (4). For eigenvalue 

problems, the fission source is added to Eq. (5) as 

follows: 

𝑞𝑓(𝑟, 𝐸) = 𝜈𝜎𝑓(𝑟, 𝐸) ∫ 𝑑𝐸′
∞

0
𝜒(𝐸′)𝜙+(𝑟, 𝐸′).       (6) 

As shown in Eq. (6), the fission source term in the 

adjoint equation is also similar to that in the forward 

transport equation with replacement of the fission 

cross-section with the fission yield in each neutron 

group. Finally, the order of the energy group sweeping 

should be reversed for the efficient calculation. 

3. Verification of Adjoint Solution 

 

4.1. Fixed source problem 

For verification of adjoint transport calculation with 

fixed source problem, we considered a simple test 

problem which has the sizes of 9 cm x 5 cm x 1 cm in 

x-, y- and z-direction, respectively. This problem can 

be considered as a 2-D problem due to reflective 

boundary conditions in z-direction. In particular, we 

considered a small size problem to avoid the spatial 

truncation errors that makes it difficult to perform 

verification by comparing with other codes. The 

problem description is given in Fig. 1, where the 

reflective condition was used in the left boundary.  

 
Fig.1 Fixed source problem description 

In this problem, the leftmost region (region I) of 1 cm 

thickness in x-direction has a uniform source of 100 

n/cm2.s in the first ten neutron groups.  We assumed 

that this region is composed of UO2 (4.5 wt% enriched 

uranium). The next 7 cm thick region was considered 

as a shielding region composed of 56Fe with a density 

of 7.87 g/cm3. The last 1cm thick region was 

considered as a detector region composed of UO2 (80 

wt% enriched uranium). We used the nu*fission cross 

sections of the detector as the source for the adjoint 

equation. These regions are homogenized in y-

direction. The fine mesh size of 0.25 cm x 0.25 cm x 

0.25 cm was used in both PARTISN and MUST code 

calculations. In the calculation with MUST code, each 

fine mesh was further divided into six tetrahedral 

meshes. 

At first, the forward transport calculations were 

performed by MUST and PARTISN code to determine 

the forward scalar flux in the detector region. The 

results are compared in Fig. 2 where the maximum 

difference between MUST and PARITSN is 2.8 %. 

 
Fig. 2. Comparison of forward scalar fluxes in 

detector region 

Next, we estimated the detector response which is 

calculated by  

𝑅 = ∫𝑑𝑉 ∫𝑑𝐸 𝜈𝜎𝑓(𝑟𝑑 , 𝐸)𝜙(𝑟𝑑 , 𝐸)                  (7) 
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where 𝜙(𝑟𝑑 , 𝐸)  represents the forward scalar flux at 

energy E in the detector region. This detector response 

can be also calculated using the adjoint scalar flux as 

follows: 

𝑅 = ∫𝑑𝑉 ∫𝑑𝐸 𝜙+ (𝑟, 𝐸)𝑞𝑒𝑥(𝑟, 𝐸)             (8) 

Table I compares the detector responses calculated 

with the forward and adjoint scalar fluxes obtained 

using MUST and PARITSN. As shown in Table I, the 

detector responses calculated with the forward and 

adjoint scalar fluxes for each code are exactly same, 

which verifies the adjoint solutions, and the 

discrepancy in the detector response between two codes 

is about 1.07%. 

 

Table I: Comparison of the detector responses 

Flux type MUST PARTISN 
Discrepancy 

(%) 

Forward 63.53 64.22 1.07 

Adjoint 63.53 64.23 1.07 

The results of the adjoint scalar flux in the source 

region are compared in Fig. 3 where the maximum 

different between MUST and PARTISN code is 3.2 %. 

 
Fig. 3. Comparison of adjoint scalar fluxes in the 

source region 

4.2. Eigenvalue problem 

 

In this sub-section, a homogeneous eigenvalue 

problem composed of 235U is considered to validate the 

MUST adjoint calculation. We assumed that the atomic 

density of 235U in the medium is 2.713x10-2 

atom/barn.cm. The problem domain is 9 cm x 1 cm x 1 

cm in x, y and z-directions, respectively. The problem 

domain was divided into 9 coarse meshes for x-

direction and so each coarse mesh is a 1 cm x 1 cm x 1 

cm cube. Each coarse mesh was further divided into 64 

fine meshes. In the calculation with MUST code, each 

fine mesh is divided into six tetrahedral meshes of 

equal volume. In this problem, we assumed the 

reflective boundary conditions in y- and z-directions, 

and the vacuum boundary conditions were applied in x-

direction. The forward and adjoint transport 

calculations were performed by the MUST and 

PARTISN codes to determine the effective neutron 

multiplication factor (keff). The keff values obtained 

from MUST and PARTISN calculations are given in 

Table II which show that the discrepancy in keff is just 

46.1 pcm and that the forward and adjoint calculations 

give exactly the same results. The normalized forward 

scalar fluxes in the center coarse mesh are compared in 

Fig. 4, where the maximum discrepancy between two 

codes is less than 0.2 %.  

 

Table II: Comparison of keff values 

Calculation 

type 
MUST PARTISN 

Discrepancy 

(pcm) 

Forward 0.84617 0.84584 46.1 

Adjoint 0.84617 0.84584 46.1 

 

 

Fig. 4. Comparison of the normalized forward scalar 

fluxes in center coarse mesh 

The adjoint flux distribution in the center coarse 

mesh obtained by MUST and PARTISN are compared 

in Fig. 5, where the maximum difference between two 

codes in flux distribution is less than 0.1 %. 
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Fig. 5. Comparison of the normalized adjoint scalar 

fluxes in center coarse mesh 

 

5. Conclusions 

In this work, we presented the verification of the 

implemented adjoint transport calculation in the MUST 

code. The adjoint transport calculation in MUST code 

was aimed to use the same sweeping order as in the 

forward transport calculation with only modification in 

the source term of the transport equation. Also, we 

presented how the adjoint calculation can be performed 

using the same forward transport calculation procedure 

by comparing the adjoint and forward transport 

formulations. 

In particular, the adjoint calculations in MUST code 

were verified with a fixed source problem and an 

eigenvalue problem. In the fixed source problem, the 

verification was performed by comparing the detector 

responses calculated with the forward flux in the 

detector and the adjoint flux in the neutron source, and 

by directly comparing the forward and adjoint scalar 

fluxes obtained with MUST and PARTISN. In the 

eigenvalue problem, the adjoint transport calculation of 

MUST was verified by showing that the adjoint and 

forward calculations give exactly the same eigenvalues 

and by comparing the eigenvalues and forward and 

adjoint scalar fluxes obtained with MUST and 

PARTISN. From the verifications, it is concluded that 

the adjoint calculation is successfully implemented in 

MUST. 
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