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1. Introduction
Though a lot of analysis and research on SA has been 

carried out right from the development of nuclear industry, all 
of the possible circumstances have not been taken into 
consideration. Therefore, in order to further improve the 
efficacy of the safety of nuclear power plants, additional 
analytical studies that can directly monitor severe accident 
phenomena are needed. This paper presents an interacting 
multiple model (IMM) based fault detection and diagnosis 
(FDD) approach for identification of in-vessel phenomena in 
order to provide the accident propagation information using 
reactor vessel (RV) out-wall temperature distribution during 
severe accidents in nuclear power plant. The in-vessel 
phenomena such as core meltdown, corium relocation, reactor 
vessel damage, reflooding, etc. can be identified using the 
proposed IMM-FDD method based on the RV out-wall wall 
temperature distribution. The proposed IMM-FDD method is 
tested with five different types of SA scenarios and the results 
show that the temperature can be estimated with good 
accuracy and hence it can be used to identify the series of in-
vessel phenomena. 

2. Models for wall temperature evolution
Let us consider the state variables to be estimated are 

temperature, rate of temperature and second order rate of 

temperature. That is 3xn   and 2 T

kx T dT dT     for

temperature estimation. In the first model for SA identification, 
let us consider simple model where we estimate temperature 

alone  kx T . The measurements we have are the outer wall 

temperature, i.e., observation matrix takes the form 

 1 0 0H  . Using the random walk model described

before we have the state transition matrix, measurement and 
noise gain matrix has the form [1, 9] 

 
1 0 0 0

0 0 0 , 0 , 1 0 0

0 0 0 0

F T H

   
        
      

  (1) 

Next models, we take into account the first- and the second-
order derivatives of state variable temperature. Originally the 
Kinematic models were developed in the target tracking field 
[1] to estimate the maneuvering target, in which the 
acceleration and the jerk are considered as white Gaussian 
noise for the first- and second- order kinematic models, 
respectively. Using Equations of motion, the motion of an 

object can be represented using velocity and acceleration. 
Therefore, if the temperature change is linear it can be 
considered similar to the case where object is moving with 
constant velocity (CV). In CV model, the state variables are 

the temperature and rate of temperature  0 T

kx T dT . 

Assuming acceleration term as noise, i.e. 
gg

kx w  , the 

equations of motion can be written as 

1  
g g

k k kx x kw  (2) 
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 Using the above equations, the state transition model for 
constant velocity can be represented as [9] 
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here, k is time step or sampling interval      (4) 
And if the temperature has nonlinear behavior then it can be 
considered similar to the case where the object is moving with 
constant acceleration (CA).  Here the state variables are 
temperature, rate of temperature and second order rate of 

temperature 2 T

kx T dT dT    . In this case the state

transition model has the form [27] 
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3. IMM FDD scheme for identification of SA sequences
A fault detection and diagnosis (FDD) algorithm is 

developed using interactive multiple model scheme to identify 
series of events in SA scenario. The measured data input to the 
IMM algorithm are the temperature data (7 points) from the 
sensors located along outside the reactor vessel. IMM FDD 
algorithm for temperature starts with an initial guess for 
temperature, rate of temperature and second order rate of 
temperature and estimates the wall temperature distribution 
(T). The estimated rate of temperature (dT) enables us to 
identify the time when the temperature rises or falls is very 
sharp thus it can be used to identify events of SA. The IMM 
FDD scheme for identification of events of SAs is illustrated 
in flow diagram Figure 1 given below. 



Transactions of the Korean Nuclear Society Virtual Spring Meeting
July 9-10, 2020

2 

Interacting/Mixing of the Estimates 

KF 1 
RW model 

KF 3 
CA model 

State Estimation 
Combination 

Model Probability 
Update 

1
|k kx 1

|k kP 3
|k kx 3

|k kP

01
|k kx 01

|k kP 03
|k kx 03

|k kP

1
1ke 

1
1kS 

1
1| 1k kx  

1
1| 1k kP  

3
1| 1k kx  

3
1| 1k kP  

1 2 3
1 1 1k k k    

1
1

2
1

3
1

k

k

k













1kz 

1| 1k kx  

1| 1k kP  

3
1ke 

3
1kS 

T 
dT 
 h 

Fault 
decision 

KF 2 
CV model 

2
|k kx 2

|k kP

02
|k kx 02

|k kP

2
1ke 

2
1kS 

2
1| 1k kx  

2
1| 1k kP  

Input data: Temperature 7 points 

Output: 
1. RV Water Level
2. Reflooding
3. RV Wall Temp
4. Core relocation
5. RPV Failure

Figure 1. IMM FDD algorithm for identification of sequences 
of SAs using wall temperature 

4. Simulation of Wall temperature distribution
The temperature distribution of inside and outside of core 

and on the wall, outside of reactor vessel is simulated for the 
validation of prediction of wall temperature. For the 
estimation of relationship with increasing of wall temperature 
in terms of increasing core temperature during sequence of 
SAs, the temperature distribution of core cell, core baffle, flow 
of core bypass, support barrel, downcomer, wall of reactor 
pressure vessel(RPV) cylinder and lower header are calculated 
using MELCOR Code, which analyzes the phenomena of 
severe accidents. For this simulation, design data of OPR 1000, 
Korean Standard Nuclear Power Plants, is used. Two high 
pressure accidents, such as SBO (Station Blackout), TLOFW 
(Total Loss of FeedWater) and 3 low pressure LOCA 
accidents, such as SBLOCA(Small Break Loss Of Coolant 
Accident), MBLOCA (Medium Break LOCA) and 
LBLOCA(Large Break LOCA) are selected as scenarios of 
simulation of sequence of SAs using MELCOR code. A small 
break of 1.35” in the cold leg is assumed for the base case of 
SBLOCA. For the SBO base case, the off-site power is 
assumed to be lost. For the TLOFW base case, main feed 
water (MFW) and AFW are considered to be unavailable. The 
simulation data of wall temperature of reactor vessel and 
lower header is available from the calculated results of the 
seven data points placed outside of the reactor for sequence of 
events that occur from different severe accident scenarios. 
Locations for the data points for temperature measurement are 
RX Vessel Upper Plenum 1 Point (TW(1,1) HS-TEMP.20021), 
RX Vessel Core Wall 3 Point (TW(2,1) HS-TEMP.20013), 
(TW(4,1) HS-TEMP.20009), (TW(7,1) HS-TEMP.20004)) 
and Bottom  hemisphere  3 Point (TB(1,1) COR-TLH.601), 
(TB(4,1) COR-TLH.301), (TB(7,1) COR-TLH.101. 

5. Identification of In-vessel Phenomena
The simulation data of temperature from 7 data points are 

labelled as HS-TEMP2002104, HS-TEMP.2001304, HS-
TEMP.2000904, HS-TEMP.2000404, COR-TLH.601, COR-
TLH.301, COR-TLH.101. The true temperature data is added 

with random white Gaussian noise of standard deviation 0.1 to 
depict practical measurement conditions. To analyze the 
estimation results of IMM and KF we selected two data points 
HS-TEMP.2000404 which tells about the lower position of the 
reactor core information and COR-TLH.301 which is at 
bottom middle hemisphere of reactor vessel. The results for 
wall temperature distribution with IMM and KF for SA 
scenario, SBO corresponding to HS-TEMP.2000404 and 
COR-TLH.301 are shown in Figure 2 and Figure 3.   

Figure 2. Results for wall temperature estimation in SBO scenario 
for point 4 (HS-TEMP.2000404) (a) estimated outer wall 
temperature using KF and IMM (b) estimated rate of temperature 
with IMM (c) temperature estimation error (d) model probabilities  

Figure 2 shows the estimation result of wall temperature 
distribution and the rate of temperature for HS-
TEMP.2000404. In Figure 2 (a), it can be noticed that the 
temperature starts to rise continuously after 3400 sec and at 
about 11711 sec the rate of temperature rise is more and a 
sudden increase of 190 K is observed in the next 13000sec and 
the temperature drops around 74 K and then again increases 
continuously to near about 1082 K in 99990sec. The dT plot in 
Figure 2(b), the slope of the curve gives us better idea about 
the temperature variation. The positive dT value suggest there 
is increase in wall temperature and negative value suggest 
there is decrease in wall temperature. Using T and dT plots of 
Figure 2 we can identify the sequence of SA events. The 
initial rise in temperature around 3400 sec can be identified as 
start of dry out condition and around 11711 sec as start of core 
relocation, that is melting of fuel, corium and around 24780 
sec where temperature starts to drop it can be identified as 
start of reflooding and after 27820 sec the temperature 
increases again which can be identified as end of reflooding. 
Difference of the axial temperature between the top, middle 
and bottom position is not much in terms of the sequence of 
severe accident scenarios. But it can be identified that the axial 
temperature of top, middle and bottom position is rapidly 
increasing or decreasing at start of dry out condition and start 
of core relocation and start of reflooding. The temperature 
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estimation error is shown in Figure 2(c) where the wall 
temperature is estimated with good accuracy by IMM and KF. 
However, IMM has better estimation performance as 
compared to KF when the distribution changes abruptly and 
has nonlinear or linear behavior. The model probabilities for 
each model used in IMM with respect to time is shown in 
Figure 2(d).  

Figure 3. Results for wall temperature estimation in SBO scenario for 
point 6 (COR-TLH.301) (a) estimated outer wall temperature using KF 
and IMM (b) estimated rate of temperature with IMM (c) temperature 
estimation error (d) model probabilities  

Figure 3 shows the estimation result of wall temperature 
distribution and the rate of temperature for bottom hemisphere 
data point COR-TLH.301. The estimation results for wall 
temperature distribution are shown in Figure 3(a) and the rate 
of temperature in Figure 3(b). There is temperature rise 
continuously after 3460 sec and then further after 11651 sec, 
temperature rises more rapidly as compared to reactor core 
area (HS-TEMP.2000404) the rise is about 300K in 12000 sec 
and then after 24580 sec, the temperature drops about 260 K 
until 26630 sec and then again there is enormous sudden rise 
of temperature near about 1273 K in very short period of time 
and then after that temperature drops to 1220 K and it is 
constant for a period of time and then again increases further 
up to 1350 K. The dT plot (Figure 3(b)) shows the rate of 
temperature where the slope and magnitude of curve are 
higher as compared to HS-TEMP.2000404. From T and dT 
plots in Figure 3, we can identify the region around 3460 sec 
as start of dry out condition and around time steps 11651 sec 
where dT slope shows positive spike and it can be identified as 
start of core relocation, at around time steps 24580 sec when 
the dT curve slope is negative it can be identified as start of 
reflooding and at 26630 sec when temperature start to rise 
sharply and dT is positive, it can be termed as end of 
reflooding and with very rapid rise in temperature with 
positive dT value and high magnitude around time 33250 sec 
it can be termed as reactor failure. The performance 
comparison of KF and IMM for temperature estimation is 
shown in Figure 3(c) as it is seen IMM has good estimation as 

compared to KF especially when the temperature increases 
linearly or non-linearly. The model probabilities for each KF 
model used in IMM with respect to time are shown in Figure 
3(d). Difference of the temperature between of top, middle and 
bottom hemisphere is not much in terms of the sequence of 
severe accident scenarios. But it can be identified that the 
temperature of top, middle and bottom hemisphere is rapidly 
increasing or decreasing at start of dry out condition and start 
of core relocation, start of cooling water injection and 
reflooding, and reactor failure.  
Figure 4 shows the T and dT IMM estimation results for 7 
data points for SBO scenario. In case of SBO, the bottom 
hemisphere of reactor vessel has large temperature fluctuation 
compared to reactor core area and Upper Plenum. As seen 
from the figure 4, the sequence of SA such as dry out, core 
relocation and cooling water injection, reflooding for the 
bottom hemisphere data points appear before as compared to 
the data points on reactor core and upper plenum, and 
moreover dT slope for bottom hemisphere has more 
magnitude that signifies the temperature change is more rapid. 
From figure 4, the wall temperature distribution of bottom 
hemisphere, we can see the very rapid temperature rise and dT 
slope shows positive spike and it can be identified that the real 
core relocation is to be starting more earlier as seen from the 
data point COR-TLH.101(yellow) in the figure 4 comparing 
with the data points HS-TEMP.2000404 on reactor core.  

Figure 4. Results for wall temperature estimation for all seven data 
points in SBO scenario (a) estimated outer wall temperature using 
IMM at different locations of reactor (b) estimated rate of 
temperature 

6. Conclusions
An algorithm based on IMM-FDD is developed for 

identification of in-vessel phenomena during severe accident. 
Identification is done from the estimated out-wall temperature 
measurement recorded outside of reactor vessel. Multiple 
models using random walk, constant velocity and constant 
acceleration are used to describe the evolution of transient 
temperature. Proposed IMM-FDD scheme is applied to the 
wall temperature containing various SA scenarios initiated by 
SBO, TLOFW, SBLOCA, MBLOCA and LBLOCA which 
are simulated using MELCOR code. It is found that the 
proposed IMM-FDD can estimate the wall temperature of core 
region with good accuracy and the rate of temperature can be 
used to identify the in-vessel phenomena during progression 
of SA. From the final estimates of wall temperature and rate of 
temperature, the sequence of in-vessel phenomena is classified 
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as core dry out, corium relocation, reflooding, and reactor 
failure. IMM has better estimation of wall temperature as 
compared to KF when the temperature distribution changes 
abruptly and has nonlinear or linear behavior. 
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