

Flexible Geometry Treatment in PRAGMA Using NVIDIA® Ray Tracing Engine OptiXTM

Jaeuk Im, Namjae Choi, Han Gyu Joo*

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
*Corresponding author: joohan@snu.ac.kr

1. Introduction

PRAGMA is a GPU-based continuous energy Monte

Carlo (MC) code dedicated for power reactor analyses

[1]. To meet the primary purpose, the geometry module

of PRAGMA is based on lattice structures which typical

LWRs have. However, eventually a flexible geometry

module should be developed for the extensibility of the

code as the lattice-based geometry representation limits

the scope of application to certain types of problems.

Most of the MC codes employ the constructive solid

geometry (CSG) representation to model the geometries,

and presumably all the codes implement their own CSG

module. However, the neutron tracing problem has an

analogy to the ray tracing problem in graphics which is a

very historic and extensively studied problem, and the

algorithms and the libraries for the ray tracing are already

well-established for GPU applications.

In this regard, to handle flexible geometries on GPUs,

it is better to utilize a highly efficient ray tracing library

rather than manually implementing the CSGs. A famous

GPU vendor NVIDIA has been releasing a ray tracing

engine OptiX [2] which works on their CUDA-enabled

GPU cards. It provides a complete ray tracing pipeline

and high level of flexibility so that several researches to

exploit OptiX in physics simulations have been made. In

neutronics, WARP [3] had first explored applying OptiX

in the GPU-based MC neutron transport, and recently a

novel port of OpenMC to GPUs [4] had exploited OptiX,

though both works are not yet production grade.

This paper examines the use of OptiX for the general

geometry neutron transport in PRAGMA and studies its

feasibility. The algorithms, issues, and some preliminary

results are presented.

2. Backgrounds and Algorithms

2.1. OptiX Ray Tracing Pipeline

The OptiX ray tracing engine is a programmable

framework developed for NVIDIA GPUs. It provides a

simple, recursive, and flexible pipeline for accelerating

ray tracing algorithms for graphics, collision detection,

visibility determination and etc.

Figure 1 shows the ray tracing pipeline in OptiX. The

yellow boxes are the user-defined programs and the blue

boxes are the OptiX built-in algorithms. Developers can

implement all the programs in the yellow boxes in a way

that is suitable for their own applications.

In MC neutron simulation, the ray generation program

casts neutrons. Then, OptiX internally traverses neutrons

throughout the geometry, and intersection and closest hit

programs provide intersections between the neutrons and

the geometric primitives. Miss program is invoked when

a neutron does not intersect any primitive and is used to

handle void boundary conditions. Any hit program is not

required in the MC simulations.

Figure 1. Call graph illustrating control flow through the ray

tracing pipeline [5].

2.2. Ray – Primitive Intersection

Rays in OptiX are represented as parametric lines:

()P t O t d (1)

P : The end point of the ray

O : Ray origin, d : Ray direction

t : Parameter that indicate distance between P and O

tmin and tmax are lower and upper threshold of the distance,

respectively. The intersection is neglected if the distance

to the intersection point is smaller than tmin or larger than

tmax. Especially, tmin is referred to as scene epsilon and it

is one of the most important variable in preventing self-

intersections, which will be explained later.

Each ray delivers data from the shading programs by

a special variable called payload. It can contain any types

of data specified by the developer. In our application, a

payload contains distance-to-surface (DTS), hit primitive

index, and such, which are determined by the closest hit

program. When miss program is invoked, a flag that the

ray had escaped the domain is returned by the payload.

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

Table 1. Intersection calculation algorithms of representative geometric primitives.

Box Primitive Cylinder Primitive Sphere Primitive

 , O t A O t B d d

 / , /A BA O B O t d t d

1

2

max , ,

min , ,

x y z

x y z

t q q q

t r r r

where

min ,

max ,

u Au Bu

u Au Bu

q t t

r t t

 2P G P G r

 2 22 0t t r d d f d f f

∴

2

1

2

2

t b b ac a

t b b ac a

where

2

2

sin

a

b

c r

d d

f d

f f

 2P G P G r

 2 22 0t t r d d f d f f

∴
2

1

2

2

t b b c

t b b c

where 2 , b c r f d f f

In OptiX, each primitive is tied to a unique intersection

program. All the intersection programs of the primitives

other than the triangle should be implemented by the user.

Box, cylinder, and sphere primitives were implemented

in PRAGMA, whose intersection calculation algorithms

are presented briefly in Table 1.

2.3. Cell Index Query Algorithm

Unfortunately, OptiX does not provide an easy way of

finding the cell index of a neutron, as it can only find the

index of the closest surface. Figure 2 illustrates a typical

problem situation that can be seen in the MC simulations.

Consider the neutrons indicated as red rays, which flies

across the water primitive (2) to reach the fuel primitives

(1 or 3). For those neutrons, OptiX will return the indices

of the fuel primitives which the rays hit, but they actually

belong to the water primitive whose cross sections should

be used for the flight kernels. Neutrons escaping closed

primitives, which are represented as black rays, do not

suffer from this problem.

Figure 2. Problematic situations in cell index query.

To resolve this problem, a cell index query algorithm

named as Conditional Iterative Ray Tracing (CIRT) was

developed as shown in Figure 3, based on the crossing

number algorithm in the point-in-polygon (PIP) problem

[6]. The CIRT algorithm performs additional ray casting

after finding DTS to determine the cell index. At every

intersection during ray casting, it is determined whether

the ray is entering or escaping the intersecting primitive.

If the ray is entering, local_level is set to -1; otherwise, it

is set to 1. It is accumulated on the global_level variable

and the ray casting continues until it becomes negative.

Set ray origin and direction

Launch rtTrace to get DTS and set global_level

while (global_level >= 0)

Move ray origin

Launch rtTrace and get local_level

global_level += local_level

end while

Get primitive index

Figure 3. The CIRT algorithm.

The working principle of the CIRT algorithm is based

on the fact that a ray that enters a closed primitive must

escape the primitive. Entering and escaping give the local

level of 1 and -1, respectively, which cancel out on the

global level. As the result, the ray casting loop continues

until it reaches the boundary of the containing primitive

and returns its index, neglecting all the closed primitives

in the trajectory. Figure 4 demonstrates how the problem

encountered in Figure 3 can be resolved by the CIRT

algorithm, in which the numbers indicate the global level.

Figure 4. Example of CIRT.

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

As the result, the tracking algorithm using OptiX ray

tracing (rtTrace) is constructed as Figure 5. rtTrace must

be executed ahead of all the other calculation kernels as

it determines the index of the cell where the neutron is

located by the CIRT algorithm.

while (num_alive > 0)

 Launch rtTrace to get cell indices and DTSs

Launch built-in simulation kernel

parallel foreach num_alive neutrons

 Retrieve cell index and DTS from payload

Calculate macroscopic cross section and DTC

Move neutron to next position

if (DTC < DTS) Process neutron reaction

end parallel foreach
Update num_alive

end while

Figure 5. Pseudocode of the tracking algorithm using OptiX.

2.4. Self-intersection Issues

Due to errors in the floating point arithmetic, a ray may

intersect a given point repeatedly with an infinitesimally

small distance, which is the case called self-intersection.

Here, the scene epsilon parameter plays a role; it neglects

intersections with distances smaller than a preset value,

which is defined to be sufficiently small not to incorrectly

ignore actual intersections.

However, the accuracy required in neutronics forces

the scene epsilon values to be a very small value which

is not sufficient to fully prevent the self-intersections. As

self-intersection can make neutrons stuck on a surface or

disturb CIRT by incorrectly changing the global level, it

should be properly addressed.

Therefore, a conditional statement is augmented to the

CIRT loop to skip the update of the global level if there

is no change in the local level – primitive index pair of

the two adjacent ray tracing steps. Additionally, when a

neutron is stuck on a surface, the position of the neutron

is perturbed conditionally based on the cumulative count

of successive DTS events to make the neutron deviate

from the surface.

3. Results

In this section, verification results of the OptiX-based

geometry treatment module in PRAGMA are presented.

Problems to be solved are 1.72 wt.% pin cell of APR1400,

CANDU6 fuel bundle, and the Lady Godiva device. The

new geometry module is verified against both the built-

in module of PRAGMA and McCARD [7].

3.1. Verification of Cell Index Query

Figure 6 illustrates the result of cell index query for

the CANDU6 fuel bundle. The cell indices of neutrons

were retrieved during an MC run and plotted. Each cell

is represented by a unique color. This verifies that the cell

indices can be properly found by the CIRT algorithm.

Figure 6. Cell index query result for CANDU6 fuel bundle.

3.2. Verification with PRAGMA Built-in Solver

The 1.72 wt.% pin cell problem was solved with both

the built-in module and the OptiX module to verify the

consistency between the two solvers with the same cross

section set. Note that the built-in solver of PRAGMA had

been already verified against McCARD. Both modules

employed 20/200 inactive/active cycles with 1,000,000

neutrons per cycle.

Table 2 compares the eigenvalue of the two solvers,

and Figure 7 compares their flux spectra. It is concluded

that the OptiX module is fully consistent to the built-in

solver, as both eigenvalues and the flux spectra coincide

well with each other.

Table 2. Comparison of eigenvalues with built-in solver.

Solver Built-in OptiX

keff 1.20023 (4) 1.20018 (4)

Figure 7. Comparison of flux spectra with built-in solver.

3.3. Verification with McCARD

Herein lie two problems that could not be handled with

the built-in lattice geometry module of PRAGMA, which

are the Lady Godiva device problem and the CANDU6

fuel bundle problem. Therefore, the verifications should

be made with McCARD which is a general-purpose MC

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

code employing CSGs. Both codes used the cross section

libraries based on ENDF-B-VII.1.

3.3.1. Lady Godiva Device

The Lady Godiva device is a highly enriched uranium

sphere with a radius of 8.741cm. It contains 94.73 wt.%

of 235U and 5.27 wt.% of 238U with the total mass density

of 18.74g/cm3. It is close to the critical mass in the room

temperature.

Table 3 compares the eigenvalues of the two codes.

Both codes employed 1,000 cycles including 20 inactive

cycles with 1,000,000 neutrons per cycle. It can be seen

that both codes yield multiplication factors that are close

to critical and that agrees with each other well within 1σ

uncertainty, which indicates the soundness of the OptiX

module.

Table 3. Comparison of eigenvalues with McCARD.

Code McCARD PRAGMA

keff 1.00139 (2) 1.00137 (2)

3.3.2. CANDU6 Fuel Bundle

A CANDU6 fuel bundle contains 37 natural uranium

fuel rods capsuled by a pressure tube and a calandria tube.

Both coolant and moderator use pressurized heavy water.

The problem was set to cold zero power (CZP) condition,

and 100 inactive cycles and 900 active cycles were used

with 100,000 neutrons per cycle.

Table 4 compares the eigenvalues of the two codes,

and Figure 8 compares their flux spectra, which present

a typical behavior of a heavy water system. As the flux

spectra as well as the eigenvalues match perfectly, it is

verified that the OptiX module can also handle irregular

geometries correctly.

Table 4. Comparison of eigenvalues with McCARD.

Code McCARD PRAGMA

keff 1.13701 (4) 1.13704 (4)

Figure 8. Comparison of flux spectra with McCARD.

4. Conclusions and Future Works

A flexible geometry module has been implemented in

the GPU-based MC code PRAGMA exploiting a state-

of-the-art ray tracing engine OptiX. MC neutron tracing

problem has an analogy with the ray tracing problem in

graphics, and in this regard, an interdisciplinary research

that integrates the outcomes of computer graphics fields

into the reactor physics had been performed.

A novel algorithm named Conditional Iterative Ray

Tracing (CIRT) was developed to effectively query the

cell indices under the ray tracing framework. Verification

results for non-lattice problems such as the Lady Godiva

device and the CANDU6 fuel bundle demonstrated that

the ray tracing libraries developed for graphics purposes

can be suitably utilized for physics simulations as well.

However, still substantial elaboration and optimization

of the module are needed. The self-intersection issue has

not been completely resolved yet, and this might lead to

unexpected problems. Furthermore, the performance of

the module has not been tuned. OptiX employs bounding

volume hierarchy (BVH) to accelerate the scene traversal

for high-performance ray tracing. To exploit the feature,

an efficient node graph of the geometry objects should be

constructed. Thus, developing an algorithm to effectively

organize the primitives into group objects for the reactor

geometries is crucial.

ACKNOWLEDGMENTS

This work was supported by KOREA HYDRO & NUCLEAR

POWER CO., LTD (No. 2018-Tech-09).

REFERENCES

[1] N. Choi, K. M. Kim, H. G. Joo, “Initial Development of

PRAGMA – A GPU-Based Continuous Energy Monte

Carlo Code for Practical Applications” Transaction of the

Korean Nuclear Society Autumn Meeting, Goyang, Korea,

Oct. 24-25 (2019).

[2] S. Parker et al., “OptiX: A General Purpose Ray Tracing

Engine,” ACM Transactions on Graphics Vol. 29, No. 4,

Article No. 66 (2010).

[3] R. Bergmann and J. Vujić, “Algorithmic Choices in WARP

– A Framework for Continuous Energy Monte Carlo

Neutron Transport in General 3D Geometries on GPUs,”

Annals of Nuclear Energy 77, pp. 176-193 (2015).

[4] J. Salmon and S. Smith, “Exploiting Hardware-Accelerated

Ray Tracing for Monte Carlo Particle Transport with

OpenMC,” Proceedings of the 10th International Workshop

on Performance Modeling, Benchmarking, and Simulation

of High Performance Computer Systems (PMBS), pp. 19-

29 (2019).

[5] NVIDIA, “NVIDIA OptiX 6.0 – Programming Guide,”

Revision 321453 (2019).

[6] K. Hormann and A. Agathos, “The Point in Polygon

Problem for Arbitrary Polygons,” Computational Geometry,

20(3), pp. 131-144 (2001).

[7] H. J. Shim et al., “McCARD: Monte Carlo Code for

Advanced Reactor Design and Analysis,” Nuclear

Engineering and Technology 44(2), pp. 161-176 (2012).

Transactions of the Korean Nuclear Society Virtual Spring Meeting

July 9-10, 2020

