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1. Introduction 

 
A critical heat flux (CHF) is a key safety parameter. 

For the CHF prediction, artificial neural network has 

been also applied and showed good performances [1, 2]. 

However, it is hardly accepted in the nuclear community 

due to a drawback of ‘Explainability’.  

A machine learning, as a subset of the artificial 

intelligence, can play a supplementary role for a more 

robust domain knowledge-based model. AECL Look-up 

Table (LUT) is widely used for the CHF prediction in 

reactor thermal-hydraulic design and safety analyses [3]. 

This domain knowledge model can predict the CHF by 

two schemes such as DSM (Direct Substitute Method) 

and HBM (Heat Balance Method). The uncertainty is 

much large in the DSM relative to the HBM. But the 

DSM is practically used in the nuclear engineering since 

HBM requires iterations to reach the heat balance in the 

CHF prediction. 

The purpose of this study is to show a feasibility that 

a machine learning-aided CHF LUT model enhances 

considerably the accuracy of the CHF prediction. 

 

2. Methods 

 

2.1 Architecture of machine learning-aided Model 

  

An architecture of the machine learning-aided CHF 

LUT model is constructed as shown in Fig. 1.  

 

Figure 1 Structure of Domain Knowledge and Machine 

Learning model 

The input xi are the variables of CHF: pressure, mass 

flux, equilibrium quality, tube diameter. The domain 

knowledge model ŷ is the 1995 AECL LUT. A machine 

learning algorism for residual r is a tree-base model of 

Extreme Gradient Boosting (XGBoost). More 

specifically, a regression model of XGBRegressor in 

Scikit-learn library is implemented to fit the residuals r 

between the measured CHFs y and the predicted CHFs ŷ. 

The target y is the measured CHF data. 

 

2.2 CHF Data  

 

The CHF data examined here cover almost a full 

range of AECL LUT as follows: 

P: Pressure, bar  1 – 190. 

G: mass flux, kg/m2s  5 – 7,700 

xeq : local equilibrium quality  -0.5 – 1.0 

hin: inlet subcooling, kJ/kg 0 – 1,600 

qʺ: critical heat flux, kW/m2  30 – 15,000 

D: tube diameter, m  0.001 – 0.038 

L/D: tube length to diameter 4.5 – 1,000 

 

A total number of the data is 12,209. The data 

distributions and histograms of the major parameters are 

displayed in Fig 2. The mass flux data are mostly placed 

in the lower part of its range, and others properly 

distributed. 

 

Figure 2 CHF data distributions and histograms 

2.3 LUT Standalone Predictions 

 

As a reference, the predictability of LUT for the 

above CHF data is assessed using HBM and DSM. The 

DSM is a simple scheme applying the local conditions 

of pressure, mass flux and local equilibrium quality 

directly to the LUT. The HBM is a heat balance scheme 

satisfying the energy conservation of heating system on 

the given inlet conditions. The statistics of HBM 

prediction are Mean of 1.002 and Standard deviation of 

0.108, while the statistics of DSM Mean of 1.015 and 

standard deviation of 0.385. In terms of the uncertainty, 
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DSM is approximately three times larger than the HBM.   

 
3. Results 

In the machine learning, some parameters are 

explored to see the overfitting problem and optimize the 

model as follows: 

- 5-fold Cross-validation 

- n_estimator = 500 

- learning rate = 0.1 

- Max-depth = 10  

- Training and testing split ratio = 0.75 

(9156 points/3053 points) 

- No regularization 

The input variables for the data training are normalized 

over the range from -1 to 1 in order to minimize the 

effect of magnitude difference of each variable.  

As a result, the CHF prediction by DSM along with 

the machine learning are compared with the measured 

CHF in Fig. 3. 

 

Figure 3 Comparisons of Predicted and Measured CHF 

Fig. 4 shows the importance of the input parameters on 

each CHF prediction with SHAP analysis [4]. Red 

means an indication of pushing the prediction higher 

and blue pushing the prediction lower. The effect of exit 

quality on CHF is dominant particularly in lower quality 

range.  

 

 
Figure 4 Feature Importance of Exit Quality 

 

The statistics of the machine learning-aided CHF LUT 

model revealed Mean =1.027, standard deviation = 

0.208 for the test data set of 3053 points. So, it is clear 

that the uncertainty of LUT can greatly decrease about 

half of that of LUT standalone. The systematic trends of 

Predicted CHF/Measured CHF are checked in Fig.4 

over the ranges of input variables of Pressure, Mass flux 

and Local quality. It shows randomly-distributed errors 

around the mean and there are no systematic errors.  

 

Figure 5 Trends of Input Variables of (a) Pressure, (b) Mass 

flux and (c) Local Quality in terms of P/M ratio 

3. Conclusions 

 

It is demonstrated that a more robust and accurate 

prediction of CHF could be expected if the domain 

knowledge-based model is coupled with the machine 

learning.  
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