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1. Introduction

In the event that any event such as a transient going 
beyond normal operating condition happens in nuclear 
power plants (NPPs), accurately recognizing and 
identifying it is essential to establish necessary actions 
for early mitigating an undesired state under such a 
circumstance. Especially, initial identification of events, 
such as a design basis accident (DBA) circumstance in 
the NPPs, can be one of the critical requisites to prevent 
from progression to a severe accident. However, correct 
identification of accident occurrence locations or types 
may not be easily done on account of monitoring of too 
many instrumentation signals related to an accident. 
Therefore, this study is performed to develop models 
accurately identifying 9 events in initial time after an 
accident occurrence, and accordingly artificial 
intelligence (AI) techniques were used to make the 
models. 

Among various machine learning methods based on 
artificial neural network (ANN) structures as AI 
techniques, long-short term memory (LSTM) [1] and 
gated recurrent unit (GRU) [2], which are with the 
recurrent neural network structure, were utilized in the 
study. The main reason why these methods were applied 
is that recurrent neural network structure has an 
advantage that information in previous steps in its 
network is relatively well transferred to current and next 
steps than other methods with typical feedforward 
network structure (e.g. deep neural network (DNN) or 
convolutional neural network (CNN) [3]). In addition, 
since event identification model using the DNN was 
developed and its result was compared with that of 
support vector machine (SVM) model in the previous 
study [4], in an attempt to check performance on various 
event identification by newly applied methods in the 
study, the models were developed using the LSTM and 
GRU. 

Thus, identification results for 9 initial events of the 
LSTM and GRU models are shown in this paper. 
Furthermore, ongoing work on event identification 
through clustering using an unsupervised learning 
method, as another AI technique, is briefly indicated in 
the paper. 

2. Machine Learning Methods Based on Recurrent
Neural Network Structure 

Recurrent neural network (RNN) [3], basic 
framework of the LSTM and GRU, can be simply 
explained as the dynamic neural network with input and 

output layers, and hidden layer with loop expressed as 
Fig. 1. That is, a hidden state in a current step is 
affected by a hidden state from a previous step in the 
RNN as Eq. (1), and lastly a value to be outputted in the 
output layer is computed using the hidden state as Eq. 
(2). Hence, RNN or RNN-based methods are known as 
effective methods particularly in time-series analysis. 
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Fig. 1. Simple recurrent neural networks

( )1t h t h t hh W x U h bφ −= + + (1) 

where W and U are weights, b is bias, and φ  is an 
activation function. 

ˆ ( )t y t yy W h bφ= + (2) 
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Fig. 2. A hidden cell of RNN

Notwithstanding this characteristic of the RNN, the 
basic RNN can encounter long term dependency 
problem, which denotes that the networks can not be 
effectively learned using the hidden states in the 
previous steps far from the current step when its hidden 
layer gets denser. Accordingly, the LSTM and GRU 
were presented to overcome this problem. These two 
variations have different revised hidden cells in the 
hidden layers in the basic RNN framework and each of 
the specific hidden cells in the LSTM and GRU is a 
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main factor to solve the aforementioned problem. Fig. 2 
indicates a hidden cell of the basic RNN. 

2.1 Long-Short Term Memory 

A hidden cell of the LSTM is called as “memory cell” 
and indicated as Fig. 3. The key of the LSTM is cell 
state in the memory cells as conveyer belt; it 
continuously transfers information in the current step to 
the next steps and has function to prevent gradient from 
vanishing. The LSTM cell in the current step is updated 
and controlled by three types of gates such as forget, 
input, and output. Namely, the information in the 
previous step is selectively propagated to the next cells 
by removing or adding using these gates. 
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Fig. 3. A memory cell in LSTM

Eqs. (3)-(5) indicate the forget, input, and output 
gates influential in the cell state in the LSTM cells, 
respectively. Each gate generally outputs hidden state of 
the previous step to values between 0 and 1 using 
sigmoid function to determine how much information is 
applied to the cell. If an outputted value from the 
sigmoid function is 1, the information is totally used in 
the cell. On the contrary, the information fades in case 
that the value gets closer to 0. The cell states and hidden 
states in the LSTM are calculated as Eqs. (6) and (7), 
respectively. 

( )1t f t f t ff W x U h bσ −= + + (3) 

( )1t i t i t ii W x U h bσ −= + + (4) 

( )1t o t o t oo W x U h bσ −= + + (5) 



1 tt t t tC f C i C−= ∗ + ∗ (6) 

( )t t th o Cφ= ∗ (7) 

where * denotes element-wise product (Hadamard 
product). 

2.2 Gated Recurrent Unit 

The GRU, one of the well-known variations of the 
LSTM, is a method simplifying the LSTM and contains 
hidden cells in its hidden layers expressed as Fig. 4. The 
main characteristic of the GRU is that it has less 
parameters than the LSTM even similar. For instance, 
only two types of internal gates such as update gate, 
which is considered as integration of the forget and 
input gates in the LSTM, and reset gate are in the 
hidden cells of the GRU, and moreover the cell state 
and the hidden state are combined as one hidden state. 
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Fig. 4. A hidden cell of GRU

Eqs. (8) and (9) denote the update and reset gates of 
the GRU. Each gate literally has a role to determine 
update ratio using the information from the previous and 
current steps and reset the information from the 
previous step, respectively. The sigmoid function is 
generally utilized for two gates in the GRU cells, which 
is the same as the LSTM cells. The hidden state in the 
GRU is calculated using an output from the update gate 
and a candidate in the current step as Eq. (10). 

( )1t u t u t uu W x U h bσ −= + + (8) 

( )1t r t r t rr W x U h bσ −= + + (9) 

1(1 ) tt t t th u h u h−= − ∗ + ∗


(10) 

where candidate result,  th , is calculated using Eq. (11)
as follows: 



1( )t h t t th W h r Uxφ −= ∗ + (11) 

3. Data of Postulated Accident Situation in NPPs

3.1 Data Acquisition by Simulating Accidents 

Identification models of initial events in the NPPs 
developed using the LSTM and GRU are based on 
accident symptoms, which is the same as the model 
established in the previous study [4]. In other words, the 
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events are identified applying trends of various 
monitoring variables under several accident 
circumstances to the AI methods. 

As an accident analysis software, modular accident 
analysis program (MAAP) code [5] was utilized to 
obtain hypothetical data by simulating 9 accidents 
postulated according to break locations and sizes, cause 
of occurrence, and progression circumstances after an 
accident occurrence with an assumption that safety 
systems of the NPPs are failed. The simulated data 
obtained from the code were used to the proposed AI 
methods. Table I shows accident type considered in the 
study, data type, and the number of obtained simulation 
data. The accidents considered in the study are loss of 
coolant accidents (LOCAs) at hot-leg and cold-leg, 
steam generator tube rupture (SGTR), main steam line 
break (MSLB), feedwater line break (FWLB), total loss 
of feedwater (TLOFW), station blackout (SBO), co-
occurrence of MSLB and SGTR, main feedwater pump 
failure (MFPF).  

Table I: Number of applied simulated data 

Accident type Data type TotalLearning Validation 
Hot-leg LOCA 190 10 200 
Cold-leg LOCA 190 10 200 

SGTR 190 10 200 
MSLB 5 2 7 
FWLB 5 2 7 

TLOFW 2 1 3 
SBO 2 1 3 

MSLB+SGTR 190 10 200 
MFPF 2 1 3 

All the obtained data consist of 30 simulated 
instrumentation signals such as temperature, pressure, 
and water level from some of the components in the 
NPP systems, and show numerical values for each 
simulated signal from the reactor scram to elapsed time 
to containment failure. Among all the simulated signals, 
only 13 types of those were applied as inputs to the 
LSTM and GRU methods. 

Each of the simulated signal values according to 
elapsed time was converted to time-integrated values in 
a short time interval after the reactor scram using Eq. 
(12) to train the methods. The integrating time span was 
considered up to 10 seconds since the proposed models 
in the study are focused on immediately identifying the 
events after an accident occurrence. 

( ) , 1, 2, , 13s

s

t t

j jt
x g t dt j

+∆
= =∫   (12) 

where ( )jg t  is a simulated signal, t∆  is an integrating 

time span, and st  is reactor scram time. 

4. Event Identification Results Using Proposed
Models 

4.1 Event Identification Results Using Proposed Models 

Identification results of the LSTM and GRU models 
were separated in case of without a measurement error 
and with several measurement errors, respectively. 
Since it is considered that measurement errors for the 
instrumentation signals can occur in the accident 
circumstances, six types of errors such as -3%, 3%, -5%, 
5% specific errors, and random errors between ±3% or 
±5% were applied to each simulated signal. 

The number of incorrect identification is for all the 
validation data in Table I in case of without a 
measurement error, while the number of incorrect 
identification is for all the obtained 823 data in Table I 
when measurement errors were applied to the data. 
Tables II and III show identification results of the 
LSTM and GRU models, respectively. 

Table II: Identification results using LSTM model 

Time 
span 

No. of incorrect identification 

0% -3% 3% -5% 5% Random 
(±3%) 

Random 
(±5%) 

3 1 2 1 3 1 1 1 
5 0 2 0 3 3 1 1 
7 0 2 0 7 3 0 1 

10 0 2 3 6 7 1 4 

Table III: Identification results using GRU model 

Time 
span 

No. of incorrect identification 

0% -3% 3% -5% 5% Random 
(±3%) 

Random 
(±5%) 

3 1 1 0 1 1 1 2 
5 0 0 0 0 0 0 1 
7 0 0 0 6 1 0 1 

10 0 0 0 3 3 0 5 

Each proposed model has shown the number of 1 
incorrect identification result in time span 3 in case that 
the simulated data without a measurement error were 
applied. However, several mis-identification results 
have been shown from two models which were tested 
using the data with measurement errors. Although each 
model is naturally affected by the measurement errors, 
the GRU model in the study can be regarded as slightly 
better than the LSTM model since the GRU model has 
shown its higher accuracy in overall cases. 
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4.2 Comparison Results of Proposed Models with Those 
of SVM Model 

Since several events were relatively well identified by 
the SVM [6] than another AI method in the previous 
study [4], performance for 9 event identification of the 
SVM model was compared with the LSTM and GRU 
models. The identification result of the SVM model is 
shown in Table IV. Likewise, the number of incorrect 
identification is for 47 validation data in case of without 
a measurement error and the number of incorrect 
identification for all the 823 simulated data is when 
measurement errors were applied to the data. 

Table IV: Identification results using SVM model 

Time 
span 

No. of incorrect identification 

0% -3% 3% -5% 5% Random 
(±3%) 

Random 
(±5%) 

3 1 1 1 5 1 1 2 
5 0 1 0 4 3 0 1 
7 0 0 0 7 4 0 0 

10 0 2 4 7 7 0 0 

Only 1 incorrect identification result has been shown 
in time span 3 from the SVM model in case of without a 
measurement error, which is the same as the proposed 
LSTM and GRU models. In case of measurement errors 
considered, however, more incorrect results have been 
shown from the SVM model especially in case of -3, 3%, 
-5%, and 5% measurement error data applied than the 
GRU model. Despite the smaller number of incorrect 
identification from the SVM model in case of with 
random errors between ±5% considered than the others, 
it is considered that the GRU model is slightly advanced 
than the SVM model in this study since higher accuracy 
has been shown from the GRU model overall. 

5. Ongoing Work for Event Identification through
Clustering Using Unsupervised Learning Methods 

Although the LSTM and GRU networks, as types of 
supervised learning methods, were used to develop the 
models quite accurately classifying and identifying the 
NPP events, it is obvious that additional efforts are 
necessary to deal with the mis-identification results arise 
from the proposed models without a doubt. Therefore, 
an additional work is being performed to identify events 
through clustering using unsupervised learning methods. 
The main purpose of ongoing work is that event 
identification information through clustering organized 
by features extracted from the un-labeled data is 
compared with that of the supervised learning methods. 
That is, it is to supplement availability of the 
information from the AI methods and to conceptually 
suggest how to deal with the predicted information to 
support operators’ recognition under the undesired 
circumstances in the NPPs in the future.  

6. Conclusions

Although efficacy of each artificial intelligence (AI) 
method differs according to its inherent characteristic 
and domains considered for application, the models 
developed using long-short term memory (LSTM) and 
gated recurrent unit (GRU) can be regarded as slightly 
advanced models than the support vector machine 
(SVM) model in aspect of identification of 9 initial 
events in the study since too many incorrect 
identification results have not been shown especially 
from the GRU model in every time span when the 
simulated data with measurement errors were applied. 
However, the proposed models can be shown as 
incomplete methods on account of occurrence of mis-
identification itself. Therefore, it is needed to deal with 
the identification results from the AI methods. Currently, 
additional work to identify the initial events through 
clustering using unsupervised learning methods is being 
performed. Once an optimized model using the 
unsupervised learning methods is established, it is 
considered that availability of the identification 
information from the AI methods can be conceptually 
supplemented. 
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